Bottom-up construction of low-dimensional perovskite thick films for high-performance X-ray detection and imaging

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-07-23 DOI:10.1038/s41377-024-01521-2
Siyin Dong, Zhenghui Fan, Wei Wei, Shujie Tie, Ruihan Yuan, Bin Zhou, Ning Yang, Xiaojia Zheng, Liang Shen
{"title":"Bottom-up construction of low-dimensional perovskite thick films for high-performance X-ray detection and imaging","authors":"Siyin Dong, Zhenghui Fan, Wei Wei, Shujie Tie, Ruihan Yuan, Bin Zhou, Ning Yang, Xiaojia Zheng, Liang Shen","doi":"10.1038/s41377-024-01521-2","DOIUrl":null,"url":null,"abstract":"<p>Quasi-two-dimensional (Q-2D) perovskite exhibits exceptional photoelectric properties and demonstrates reduced ion migration compared to 3D perovskite, making it a promising material for the fabrication of highly sensitive and stable X-ray detectors. However, achieving high-quality perovskite films with sufficient thickness for efficient X-ray absorption remains challenging. Herein, we present a novel approach to regulate the growth of Q-2D perovskite crystals in a mixed atmosphere comprising methylamine (CH<sub>3</sub>NH<sub>2</sub>, MA) and ammonia (NH<sub>3</sub>), resulting in the successful fabrication of high-quality films with a thickness of hundreds of micrometers. Subsequently, we build a heterojunction X-ray detector by incorporating the perovskite layer with titanium dioxide (TiO<sub>2</sub>). The precise regulation of perovskite crystal growth and the meticulous design of the device structure synergistically enhance the resistivity and carrier transport properties of the X-ray detector, resulting in an ultrahigh sensitivity (29721.4 μC Gy<sub>air</sub><sup>−1</sup> cm<sup>−2</sup>) for low-dimensional perovskite X-ray detectors and a low detection limit of 20.9 nGy<sub>air</sub> s<sup>−1</sup>. We have further demonstrated a flat panel X-ray imager (FPXI) showing a high spatial resolution of 3.6 lp mm<sup>−1</sup> and outstanding X-ray imaging capability under low X-ray doses. This work presents an effective methodology for achieving high-performance Q-2D perovskite FPXIs that holds great promise for various applications in imaging technology.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01521-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-two-dimensional (Q-2D) perovskite exhibits exceptional photoelectric properties and demonstrates reduced ion migration compared to 3D perovskite, making it a promising material for the fabrication of highly sensitive and stable X-ray detectors. However, achieving high-quality perovskite films with sufficient thickness for efficient X-ray absorption remains challenging. Herein, we present a novel approach to regulate the growth of Q-2D perovskite crystals in a mixed atmosphere comprising methylamine (CH3NH2, MA) and ammonia (NH3), resulting in the successful fabrication of high-quality films with a thickness of hundreds of micrometers. Subsequently, we build a heterojunction X-ray detector by incorporating the perovskite layer with titanium dioxide (TiO2). The precise regulation of perovskite crystal growth and the meticulous design of the device structure synergistically enhance the resistivity and carrier transport properties of the X-ray detector, resulting in an ultrahigh sensitivity (29721.4 μC Gyair−1 cm−2) for low-dimensional perovskite X-ray detectors and a low detection limit of 20.9 nGyair s−1. We have further demonstrated a flat panel X-ray imager (FPXI) showing a high spatial resolution of 3.6 lp mm−1 and outstanding X-ray imaging capability under low X-ray doses. This work presents an effective methodology for achieving high-performance Q-2D perovskite FPXIs that holds great promise for various applications in imaging technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自下而上构建用于高性能 X 射线探测和成像的低维包晶石厚膜
与三维包晶相比,准二维(Q-2D)包晶表现出卓越的光电特性,并减少了离子迁移,使其成为制造高灵敏度和高稳定性 X 射线探测器的理想材料。然而,要获得具有足够厚度、可高效吸收 X 射线的高质量磷灰石薄膜仍具有挑战性。在本文中,我们介绍了一种在由甲胺(CH3NH2,MA)和氨(NH3)组成的混合气氛中调节 Q-2D 包晶体生长的新方法,从而成功制备出厚度达数百微米的高质量薄膜。随后,我们将透辉石层与二氧化钛(TiO2)结合在一起,建立了一个异质结 X 射线探测器。对包晶石晶体生长的精确调控和对器件结构的精心设计协同增强了 X 射线探测器的电阻率和载流子传输特性,从而实现了低维包晶石 X 射线探测器的超高灵敏度(29721.4 μC Gyair-1 cm-2)和 20.9 nGyair s-1 的低检测限。我们进一步展示了一种平板 X 射线成像仪(FPXI),其空间分辨率高达 3.6 lp mm-1,在低 X 射线剂量下具有出色的 X 射线成像能力。这项研究提出了实现高性能 Q-2D 包晶 FPXI 的有效方法,为成像技术的各种应用带来了巨大前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Parity-Time symmetry helps breaking a new limit Neural stimulation and modulation with sub-cellular precision by optomechanical bio-dart Phase-change VO2-based thermochromic smart windows Optical fibre based artificial compound eyes for direct static imaging and ultrafast motion detection Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1