3D cellular self-assembly on optical disc-imprinted nanopatterns†

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2024-07-23 DOI:10.1039/D4LC00386A
Jeeyeon Lee and Chwee Teck Lim
{"title":"3D cellular self-assembly on optical disc-imprinted nanopatterns†","authors":"Jeeyeon Lee and Chwee Teck Lim","doi":"10.1039/D4LC00386A","DOIUrl":null,"url":null,"abstract":"<p >Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00386a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光盘压印纳米图案上的三维细胞自组装
三维(3D)细胞组合体,如癌症球形体或有机体,因其生理相关性和在各种生物应用中的多功能性而逐渐得到认可。模仿细胞外基质的纳米图案提供了指导细胞行为的重要拓扑线索,有可能促进三维细胞自组装。然而,高昂的设备成本、制造费用以及复杂耗时的自然过程阻碍了纳米图案在生物应用中的广泛应用。在这项研究中,我们证明了由光盘生成的纳米图案能有效促进细胞自组装。我们提出了一种利用弹性体复制成型法从各种类型的光盘中生成纳米图案的简单而经济的方法。我们制备出了各种纳米图案,包括不同间距和高度的纳米槽/脊、纳米柱和纳米凹坑,凸显了光盘作为复制成型主模板的实用性。我们探索了在光盘上重复复制成型的可行性,以提高纳米图案制造的成本效益。我们的研究表明,基于纳米图案基底制造的纳米图案井(NW-chip)能有效诱导三种癌细胞(NCI-H1650 肺癌细胞、Mia-PaCa-2 胰腺癌细胞、MCF-7 乳腺癌细胞)的三维细胞自组装,它们具有不同的形态和大小。这突出表明,光盘生成的纳米图案可以提供有效的拓扑引导,从而调节细胞行为。此外,我们还证明了纳米图案压印 PDMS 材料和非粘附性表面处理增强的疏水性可进一步促进三维细胞自组装。总之,我们的研究强调了利用简单的 PDMS 成型技术从容易获得且成本低廉的光盘中生成的各种类型的纳米图案,它们不仅可以作为细胞自组装的宝贵工具,还可以用于各种生物应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Observing root growth and signalling responses to stress gradients and pathogens using the bi-directional dual-flow RootChip Optical tweezer-assisted cell pairing and fusion for somatic cell nuclear transfer within an open microchannel. Microstring-engineered tension tissues: A novel platform for replicating tissue mechanics and advancing mechanobiology Discretised microfluidics for noninvasive health monitoring using sweat sensing Inside back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1