Mohammed Asif, Kaneez Fatima, Syed Sarim Imam, Sultan Alshehri, Wael A. Mahdi
{"title":"Formulation and Evaluation of Meloxicam Hybrid nano Particles","authors":"Mohammed Asif, Kaneez Fatima, Syed Sarim Imam, Sultan Alshehri, Wael A. Mahdi","doi":"10.1208/s12249-024-02878-8","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of the present study was to prepare meloxicam (MX) entrapped hybrid particles (HPs) to enhance intestinal permeation and anti-inflammatory activity. MX-HPs were prepared by nanoprecipitation method using lipid, chitosan, poloxamer, and TPGS. The formulations (MX-HPs1, MX-HPs2, MX-HPs3) were evaluated for particle size, entrapment efficiency, and drug release to select the optimized composition and further evaluated for permeation study, stability study, morphology, interaction study, and anti-inflammatory activity by carrageenan-induced rat paw edema test. The prepared MX-HPs showed nano sized particles (198.5 ± 3.7 to 223.8 ± 2.1 nm) and PDI (<0.3), zeta potential (16.5 ± 2.7 to 29.1 ± 3.6 mV), and high entrapment efficiency (75.1 ± 4.7 to 88.5 ± 3.9%). The surface morphology was assessed by transmission electron microscopy and showed non-aggregated particles. Infra-red (IR) spectroscopy of pure MX as well as formulation revealed no drug-polymer interaction and X-ray diffraction confirmed the conversion of crystalline MX into amorphous form. The release study data revealed prolonged MX release for 24 h. The selected optimized hybrid particles (MX-HPs2) revealed a 2.3-fold improved enhancement ratio than free MX. The storage stability and gastrointestinal stability data demonstrated a stable formulation in SIF as well as SGF. The anti-inflammatory activity showed better therapeutic action than pure MX dispersion. From the study, it can be concluded that the prepared MX-HPs may be a promising delivery system for MX in treating inflammatory disorders.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02878-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of the present study was to prepare meloxicam (MX) entrapped hybrid particles (HPs) to enhance intestinal permeation and anti-inflammatory activity. MX-HPs were prepared by nanoprecipitation method using lipid, chitosan, poloxamer, and TPGS. The formulations (MX-HPs1, MX-HPs2, MX-HPs3) were evaluated for particle size, entrapment efficiency, and drug release to select the optimized composition and further evaluated for permeation study, stability study, morphology, interaction study, and anti-inflammatory activity by carrageenan-induced rat paw edema test. The prepared MX-HPs showed nano sized particles (198.5 ± 3.7 to 223.8 ± 2.1 nm) and PDI (<0.3), zeta potential (16.5 ± 2.7 to 29.1 ± 3.6 mV), and high entrapment efficiency (75.1 ± 4.7 to 88.5 ± 3.9%). The surface morphology was assessed by transmission electron microscopy and showed non-aggregated particles. Infra-red (IR) spectroscopy of pure MX as well as formulation revealed no drug-polymer interaction and X-ray diffraction confirmed the conversion of crystalline MX into amorphous form. The release study data revealed prolonged MX release for 24 h. The selected optimized hybrid particles (MX-HPs2) revealed a 2.3-fold improved enhancement ratio than free MX. The storage stability and gastrointestinal stability data demonstrated a stable formulation in SIF as well as SGF. The anti-inflammatory activity showed better therapeutic action than pure MX dispersion. From the study, it can be concluded that the prepared MX-HPs may be a promising delivery system for MX in treating inflammatory disorders.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.