{"title":"Nuclear receptor Rev-erbα alleviates intervertebral disc degeneration by recruiting NCoR-HDAC3 co-repressor and inhibiting NLRP3 inflammasome.","authors":"Qingshuang Zhou, Xiaojiang Pu, Zhuang Qian, Haojie Chen, Nannan Wang, Sinian Wang, Zhenhua Feng, Zezhang Zhu, Bin Wang, Yong Qiu, Xu Sun","doi":"10.1111/cpr.13720","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral discs (IVDs) are rhythmic tissues that experience daily low-load recovery. Notably, aging and abnormal mechanical stress predispose IVDs to degeneration due to dysrhythmia-induced disordered metabolism. Meanwhile, Rev-erbα acts as a transcriptional repressor in maintaining biorhythms and homeostasis; however, its function in IVD homeostasis and degeneration remains unclear. This study assessed the relationship between low Rev-erbα expression levels and IVD degeneration. Rev-erbα deficiency accelerated needle puncture or aging-induced IVD degeneration, characterized by increased extracellular matrix (ECM) catabolism and nucleus pulposus (NP) cell apoptosis. Mechanistically, Rev-erbα knockdown in NP cells aggravated rhIL1β-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, exacerbating the imbalanced ECM and NP cell apoptosis. Meanwhile, blocking NLRP3 inflammasome activation mitigated Rev-erbα deficiency and needle puncture-induced IVD degeneration. Particularly, Rev-erbα mediated the transcriptional repression of the NLRP3 inflammasome via the ligand heme-binding of nuclear receptor co-repressor (NCoR) and histone deacetylase 3 (HDAC3) complex. Thus, the increased expression of Rev-erbα in NP cells following short-term rhIL1β treatment failed to inhibit NLRP3 transcription in vitro owing to heme depletion. Pharmacological activation of Rev-erbα in vivo and in vitro alleviated IVD degeneration by altering the NLRP3 inflammasome. Taken together, targeting Rev-erbα may be a potential therapeutic strategy for alleviating IVD degeneration and its related diseases.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13720"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13720","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intervertebral discs (IVDs) are rhythmic tissues that experience daily low-load recovery. Notably, aging and abnormal mechanical stress predispose IVDs to degeneration due to dysrhythmia-induced disordered metabolism. Meanwhile, Rev-erbα acts as a transcriptional repressor in maintaining biorhythms and homeostasis; however, its function in IVD homeostasis and degeneration remains unclear. This study assessed the relationship between low Rev-erbα expression levels and IVD degeneration. Rev-erbα deficiency accelerated needle puncture or aging-induced IVD degeneration, characterized by increased extracellular matrix (ECM) catabolism and nucleus pulposus (NP) cell apoptosis. Mechanistically, Rev-erbα knockdown in NP cells aggravated rhIL1β-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, exacerbating the imbalanced ECM and NP cell apoptosis. Meanwhile, blocking NLRP3 inflammasome activation mitigated Rev-erbα deficiency and needle puncture-induced IVD degeneration. Particularly, Rev-erbα mediated the transcriptional repression of the NLRP3 inflammasome via the ligand heme-binding of nuclear receptor co-repressor (NCoR) and histone deacetylase 3 (HDAC3) complex. Thus, the increased expression of Rev-erbα in NP cells following short-term rhIL1β treatment failed to inhibit NLRP3 transcription in vitro owing to heme depletion. Pharmacological activation of Rev-erbα in vivo and in vitro alleviated IVD degeneration by altering the NLRP3 inflammasome. Taken together, targeting Rev-erbα may be a potential therapeutic strategy for alleviating IVD degeneration and its related diseases.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.