The heritability of fitness in a wild annual plant population with hierarchical size structure.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY Evolution Pub Date : 2024-10-01 DOI:10.1093/evolut/qpae112
Daniel J Schoen, Doug Speed
{"title":"The heritability of fitness in a wild annual plant population with hierarchical size structure.","authors":"Daniel J Schoen, Doug Speed","doi":"10.1093/evolut/qpae112","DOIUrl":null,"url":null,"abstract":"<p><p>The relative magnitude of additive genetic vs. residual variation for fitness traits is important in models for predicting the rate of evolution and population persistence in response to changes in the environment. In many annual plants, lifetime reproductive fitness is correlated with end-of-season plant biomass, which can vary significantly from plant to plant in the same population. We measured end-of-season plant biomasses and obtained single nucleotide polymorphism (SNP) genotypes of plants in a dense, natural population of the annual plant species Impatiens capensis with hierarchical size structure. These data were used to estimate the amount of heritable variation for position in the size hierarchy and for plant biomass. Additive genetic variance for a position in the size hierarchy and plant biomass were both significantly different from zero. These results are discussed in relationship to the theory for the heritability of fitness in natural populations and ecological factors that potentially influence heritable variation for fitness in this species.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":"1739-1745"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae112","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The relative magnitude of additive genetic vs. residual variation for fitness traits is important in models for predicting the rate of evolution and population persistence in response to changes in the environment. In many annual plants, lifetime reproductive fitness is correlated with end-of-season plant biomass, which can vary significantly from plant to plant in the same population. We measured end-of-season plant biomasses and obtained single nucleotide polymorphism (SNP) genotypes of plants in a dense, natural population of the annual plant species Impatiens capensis with hierarchical size structure. These data were used to estimate the amount of heritable variation for position in the size hierarchy and for plant biomass. Additive genetic variance for a position in the size hierarchy and plant biomass were both significantly different from zero. These results are discussed in relationship to the theory for the heritability of fitness in natural populations and ecological factors that potentially influence heritable variation for fitness in this species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有等级规模结构的野生一年生植物种群的健康遗传率。
在预测进化速度和种群持续性以应对环境变化的模型中,适合性状的加性遗传变异与残余变异的相对大小非常重要。在许多一年生植物中,终生繁殖适性与季末植物生物量相关,而同一种群中不同植物的季末生物量可能会有很大差异。我们测量了一年生植物Impatiens capensis的密集自然种群的季末植物生物量,并获得了具有分层大小结构的植物的SNP基因型。这些数据被用来估算大小层次结构中位置和植物生物量的遗传变异量。大小层次结构中的位置和植物生物量的加性遗传变异均显著不同于零。这些结果与自然种群的适应性遗传理论以及可能影响该物种适应性遗传变异的生态因素进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
期刊最新文献
Metabolic remodeling and de novo mutations transcend cryptic variation as drivers of adaptation in yeast. Interactions within higher-order antibiotic combinations do not influence the rate of adaptation in bacteria. Quantifying the phenome-wide response to sex-specific selection in Drosophila melanogaster. Digest: Clinal variation in plant traits is shaped by plastic and evolutionary responses to water regimes and herbivory. Optimal polyandry in fruit flies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1