{"title":"Lazy neutrophils - a lack of DGAT1 reduces the chemotactic activity of mouse neutrophils.","authors":"Alicja Uchańska, Agnieszka Morytko, Kamila Kwiecień, Ewa Oleszycka, Beata Grygier, Joanna Cichy, Patrycja Kwiecińska","doi":"10.1007/s00011-024-01920-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neutrophils are key players in the innate immune system, actively migrating to sites of inflammation in the highly energetic process of chemotaxis. In this study, we focus on the role of acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the synthesis of triglycerides, the major form of stored energy, in neutrophil chemotaxis.</p><p><strong>Methods and results: </strong>Using a mouse model of psoriasis, we show that DGAT1-deficiency reduces energy-demanding neutrophil infiltration to the site of inflammation, but this inhibition is not caused by decreased glycolysis and reduced ATP production by neutrophils lacking DGAT1. Flow cytometry and immunohistochemistry analysis demonstrate that DGAT1 also does not influence lipid accumulation in lipid droplets during inflammation. Interestingly, as has been shown previously, a lack of DGAT1 leads to an increase in the concentration of retinoic acid, and here, using real-time PCR and publicly-available next-generation RNA sequencing datasets, we show the upregulation of retinoic acid-responsive genes in Dgat1KO neutrophils. Furthermore, supplementation of WT neutrophils with exogenous retinoic acid mimics DGAT1-deficiency in the inhibition of neutrophil chemotaxis in in vitro transwell assay.</p><p><strong>Conclusions: </strong>These results suggest that impaired skin infiltration by neutrophils in Dgat1KO mice is a result of the inhibitory action of an increased concentration of retinoic acid, rather than impaired lipid metabolism in DGAT1-deficient mice.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1631-1643"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-024-01920-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Neutrophils are key players in the innate immune system, actively migrating to sites of inflammation in the highly energetic process of chemotaxis. In this study, we focus on the role of acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the synthesis of triglycerides, the major form of stored energy, in neutrophil chemotaxis.
Methods and results: Using a mouse model of psoriasis, we show that DGAT1-deficiency reduces energy-demanding neutrophil infiltration to the site of inflammation, but this inhibition is not caused by decreased glycolysis and reduced ATP production by neutrophils lacking DGAT1. Flow cytometry and immunohistochemistry analysis demonstrate that DGAT1 also does not influence lipid accumulation in lipid droplets during inflammation. Interestingly, as has been shown previously, a lack of DGAT1 leads to an increase in the concentration of retinoic acid, and here, using real-time PCR and publicly-available next-generation RNA sequencing datasets, we show the upregulation of retinoic acid-responsive genes in Dgat1KO neutrophils. Furthermore, supplementation of WT neutrophils with exogenous retinoic acid mimics DGAT1-deficiency in the inhibition of neutrophil chemotaxis in in vitro transwell assay.
Conclusions: These results suggest that impaired skin infiltration by neutrophils in Dgat1KO mice is a result of the inhibitory action of an increased concentration of retinoic acid, rather than impaired lipid metabolism in DGAT1-deficient mice.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.