Filipe Maia, Marta V B Machado, Gustavo Silva, Fábio Yuzo Nakamura, João Ribeiro
{"title":"Hemodynamic Effects of Intermittent Pneumatic Compression on Athletes: A Double-Blinded Randomized Crossover Study.","authors":"Filipe Maia, Marta V B Machado, Gustavo Silva, Fábio Yuzo Nakamura, João Ribeiro","doi":"10.1123/ijspp.2024-0017","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>There are multiple postexercise recovery technologies available in the market based on the assumption of blood-flow enhancement. Lower-limb intermittent pneumatic compression (IPC) has been widely used, but the available scientific evidence supporting its effectiveness remains scarce, requiring a deeper investigation into its underlying mechanisms. The aim of this study was to assess the hemodynamic effects caused by the use of IPC at rest.</p><p><strong>Methods: </strong>Twenty-two soccer and track and field athletes underwent two 15-minute IPC protocols (moderate- [80 mm Hg] and high-pressure [200 mm Hg]) in a randomized order. Systolic peak velocity, end-diastolic peak velocity, arterial diameter, and heart rate were measured before, during (at the eighth minute), and 2 minutes after each IPC protocol.</p><p><strong>Results: </strong>Significant effects were observed between before and during (eighth minute) the IPC protocol for measures of systolic (P < .001) and end-diastolic peak velocities (P < .001), with the greater effects observed during the high-pressure protocol. Moreover, 2 minutes after each IPC protocol, hemodynamic variables returned to values close to baseline. Arterial diameter presented significant differences between pressures during the IPC protocols (P < .05), while heart rate remained unaltered.</p><p><strong>Conclusion: </strong>IPC effectively enhances transitory blood flow of athletes, particularly when applying high-pressure protocols.</p>","PeriodicalId":14295,"journal":{"name":"International journal of sports physiology and performance","volume":" ","pages":"932-938"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports physiology and performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijspp.2024-0017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: There are multiple postexercise recovery technologies available in the market based on the assumption of blood-flow enhancement. Lower-limb intermittent pneumatic compression (IPC) has been widely used, but the available scientific evidence supporting its effectiveness remains scarce, requiring a deeper investigation into its underlying mechanisms. The aim of this study was to assess the hemodynamic effects caused by the use of IPC at rest.
Methods: Twenty-two soccer and track and field athletes underwent two 15-minute IPC protocols (moderate- [80 mm Hg] and high-pressure [200 mm Hg]) in a randomized order. Systolic peak velocity, end-diastolic peak velocity, arterial diameter, and heart rate were measured before, during (at the eighth minute), and 2 minutes after each IPC protocol.
Results: Significant effects were observed between before and during (eighth minute) the IPC protocol for measures of systolic (P < .001) and end-diastolic peak velocities (P < .001), with the greater effects observed during the high-pressure protocol. Moreover, 2 minutes after each IPC protocol, hemodynamic variables returned to values close to baseline. Arterial diameter presented significant differences between pressures during the IPC protocols (P < .05), while heart rate remained unaltered.
Conclusion: IPC effectively enhances transitory blood flow of athletes, particularly when applying high-pressure protocols.
期刊介绍:
The International Journal of Sports Physiology and Performance (IJSPP) focuses on sport physiology and performance and is dedicated to advancing the knowledge of sport and exercise physiologists, sport-performance researchers, and other sport scientists. The journal publishes authoritative peer-reviewed research in sport physiology and related disciplines, with an emphasis on work having direct practical applications in enhancing sport performance in sport physiology and related disciplines. IJSPP publishes 10 issues per year: January, February, March, April, May, July, August, September, October, and November.