Enrico Boccato, Francesco Petruzzellis, César Daniel Bordenave, Andrea Nardini, Mauro Tretiach, Stefan Mayr, Fabio Candotto Carniel
{"title":"The sound of lichens: ultrasonic acoustic emissions during desiccation question cavitation events in the hyphae.","authors":"Enrico Boccato, Francesco Petruzzellis, César Daniel Bordenave, Andrea Nardini, Mauro Tretiach, Stefan Mayr, Fabio Candotto Carniel","doi":"10.1093/jxb/erae318","DOIUrl":null,"url":null,"abstract":"<p><p>Lichens are a mutualistic symbiosis between a fungus and one or more photosynthetic partners. They are photosynthetically active during desiccation down to relative water contents (RWCs) as low as 30% (on dry mass). Experimental evidence suggests that during desiccation, the photobionts have a higher hydration level than the surrounding fungal pseudo-tissues. Explosive cavitation events in the hyphae might cause water movements towards the photobionts. This hypothesis was tested in two foliose lichens by measurements of ultrasonic acoustic emissions (UAEs), a method commonly used in vascular plants but never in lichens, and by measurements of PSII efficiency, water potential, and RWC. Thallus structural changes were characterized by low-temperature scanning electron microscopy. The thalli were silent between 380% and 30% RWCs, when explosive cavitation events should cause movements of liquid water. Nevertheless, the thalli emitted UAEs at ~5% RWC. Accordingly, the medullary hyphae were partially shrunken at ~15% RWC, whereas they were completely shrunken at <5% RWC. These results do not support the hypothesis of hyphal cavitation and suggest that the UAEs originate from structural changes at hyphal level. The shrinking of hyphae is proposed as an adaptation to avoid cell damage at very low RWCs.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6579-6592"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae318","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lichens are a mutualistic symbiosis between a fungus and one or more photosynthetic partners. They are photosynthetically active during desiccation down to relative water contents (RWCs) as low as 30% (on dry mass). Experimental evidence suggests that during desiccation, the photobionts have a higher hydration level than the surrounding fungal pseudo-tissues. Explosive cavitation events in the hyphae might cause water movements towards the photobionts. This hypothesis was tested in two foliose lichens by measurements of ultrasonic acoustic emissions (UAEs), a method commonly used in vascular plants but never in lichens, and by measurements of PSII efficiency, water potential, and RWC. Thallus structural changes were characterized by low-temperature scanning electron microscopy. The thalli were silent between 380% and 30% RWCs, when explosive cavitation events should cause movements of liquid water. Nevertheless, the thalli emitted UAEs at ~5% RWC. Accordingly, the medullary hyphae were partially shrunken at ~15% RWC, whereas they were completely shrunken at <5% RWC. These results do not support the hypothesis of hyphal cavitation and suggest that the UAEs originate from structural changes at hyphal level. The shrinking of hyphae is proposed as an adaptation to avoid cell damage at very low RWCs.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.