Phoebe Asplin, Rebecca Mancy, Thomas Finnie, Fergus Cumming, Matt J Keeling, Edward M Hill
{"title":"Symptom propagation in respiratory pathogens of public health concern: a review of the evidence.","authors":"Phoebe Asplin, Rebecca Mancy, Thomas Finnie, Fergus Cumming, Matt J Keeling, Edward M Hill","doi":"10.1098/rsif.2024.0009","DOIUrl":null,"url":null,"abstract":"<p><p>Symptom propagation occurs when the symptom set an individual experiences is correlated with the symptom set of the individual who infected them. Symptom propagation may dramatically affect epidemiological outcomes, potentially causing clusters of severe disease. Conversely, it could result in chains of mild infection, generating widespread immunity with minimal cost to public health. Despite accumulating evidence that symptom propagation occurs for many respiratory pathogens, the underlying mechanisms are not well understood. Here, we conducted a scoping literature review for 14 respiratory pathogens to ascertain the extent of evidence for symptom propagation by two mechanisms: dose-severity relationships and route-severity relationships. We identify considerable heterogeneity between pathogens in the relative importance of the two mechanisms, highlighting the importance of pathogen-specific investigations. For almost all pathogens, including influenza and SARS-CoV-2, we found support for at least one of the two mechanisms. For some pathogens, including influenza, we found convincing evidence that both mechanisms contribute to symptom propagation. Furthermore, infectious disease models traditionally do not include symptom propagation. We summarize the present state of modelling advancements to address the methodological gap. We then investigate a simplified disease outbreak scenario, finding that under strong symptom propagation, isolating mildly infected individuals can have negative epidemiological implications.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240009"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0009","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Symptom propagation occurs when the symptom set an individual experiences is correlated with the symptom set of the individual who infected them. Symptom propagation may dramatically affect epidemiological outcomes, potentially causing clusters of severe disease. Conversely, it could result in chains of mild infection, generating widespread immunity with minimal cost to public health. Despite accumulating evidence that symptom propagation occurs for many respiratory pathogens, the underlying mechanisms are not well understood. Here, we conducted a scoping literature review for 14 respiratory pathogens to ascertain the extent of evidence for symptom propagation by two mechanisms: dose-severity relationships and route-severity relationships. We identify considerable heterogeneity between pathogens in the relative importance of the two mechanisms, highlighting the importance of pathogen-specific investigations. For almost all pathogens, including influenza and SARS-CoV-2, we found support for at least one of the two mechanisms. For some pathogens, including influenza, we found convincing evidence that both mechanisms contribute to symptom propagation. Furthermore, infectious disease models traditionally do not include symptom propagation. We summarize the present state of modelling advancements to address the methodological gap. We then investigate a simplified disease outbreak scenario, finding that under strong symptom propagation, isolating mildly infected individuals can have negative epidemiological implications.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.