Pub Date : 2024-11-01Epub Date: 2024-11-06DOI: 10.1098/rsif.2024.0575
Vaibhava Srivastava, Drik Sarkar, Claus Kadelka
Infectious diseases thrive in war-torn societies. The recent sharp increase in human conflict and war thus requires the development of disease mitigation tools that account for the specifics of war, such as the scarcity of important public health resources. We developed a compartmental, differential equation-based disease model that considers key social, war and disease mechanisms, such as gender homophily and the replacement of soldiers. This model enables the identification of optimal allocation strategies that, given limited resources required for treating infected individuals, minimize disease burden, assessed by total mortality and final epidemic size. A comprehensive model analysis reveals that the level of resource scarcity fundamentally affects the optimal allocation. Desynchronization of the epidemic peaks among several population subgroups emerges as a desirable principle since it reduces disease spread between different subgroups. Further, the level of preferential mixing among people of the same gender, gender homophily, proves to strongly affect disease dynamics and optimal treatment allocation strategies, highlighting the importance of accurately accounting for heterogeneous mixing patterns. Altogether, the findings help answer a timely question: how can infectious diseases be best controlled in societies at war? The developed model can be easily extended to specific diseases, countries and interventions.
{"title":"Model-informed optimal allocation of limited resources to mitigate infectious disease outbreaks in societies at war.","authors":"Vaibhava Srivastava, Drik Sarkar, Claus Kadelka","doi":"10.1098/rsif.2024.0575","DOIUrl":"10.1098/rsif.2024.0575","url":null,"abstract":"<p><p>Infectious diseases thrive in war-torn societies. The recent sharp increase in human conflict and war thus requires the development of disease mitigation tools that account for the specifics of war, such as the scarcity of important public health resources. We developed a compartmental, differential equation-based disease model that considers key social, war and disease mechanisms, such as gender homophily and the replacement of soldiers. This model enables the identification of optimal allocation strategies that, given limited resources required for treating infected individuals, minimize disease burden, assessed by total mortality and final epidemic size. A comprehensive model analysis reveals that the level of resource scarcity fundamentally affects the optimal allocation. Desynchronization of the epidemic peaks among several population subgroups emerges as a desirable principle since it reduces disease spread between different subgroups. Further, the level of preferential mixing among people of the same gender, gender homophily, proves to strongly affect disease dynamics and optimal treatment allocation strategies, highlighting the importance of accurately accounting for heterogeneous mixing patterns. Altogether, the findings help answer a timely question: how can infectious diseases be best controlled in societies at war? The developed model can be easily extended to specific diseases, countries and interventions.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240575"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-13DOI: 10.1098/rsif.2024.0385
Nathan J M Laxague, Christopher J Zappa, Shantanu Soumya, Oliver Wurl
Ocean waves are significantly damped by biogenic surfactants, which accumulate at the sea surface in every ocean basin. The growth, development, and breaking of short wind-driven surface waves are key mediators of the air-sea exchange of momentum, heat and trace gases. The mechanisms through which surfactants suppress waves have been studied in great detail through careful laboratory experimentation in quasi-one-dimensional wave tanks. However, the spatial scales over which this damping occurs in structurally complex surfactant slicks on the real ocean have not been resolved. Here, we present the results of field observations of the spatial response of decimetre- to millimetre-scale waves to biogenic surfactant slicks. We found that wave damping in organic material-rich coastal waters resulted in a net (spatio-temporally averaged) reduction of approximately 50% in wave slope variance relative to the open ocean for low to moderate wind speeds. This reduction of wave slope variance is understood to result in a corresponding reduction in momentum input to the wave field. This significant effect had thus far evaded quantification due in large part to the enormous range of scales required for its description-spanning the sea surface microlayer to the ocean submesoscale.
{"title":"The suppression of ocean waves by biogenic slicks.","authors":"Nathan J M Laxague, Christopher J Zappa, Shantanu Soumya, Oliver Wurl","doi":"10.1098/rsif.2024.0385","DOIUrl":"10.1098/rsif.2024.0385","url":null,"abstract":"<p><p>Ocean waves are significantly damped by biogenic surfactants, which accumulate at the sea surface in every ocean basin. The growth, development, and breaking of short wind-driven surface waves are key mediators of the air-sea exchange of momentum, heat and trace gases. The mechanisms through which surfactants suppress waves have been studied in great detail through careful laboratory experimentation in quasi-one-dimensional wave tanks. However, the spatial scales over which this damping occurs in structurally complex surfactant slicks on the real ocean have not been resolved. Here, we present the results of field observations of the spatial response of decimetre- to millimetre-scale waves to biogenic surfactant slicks. We found that wave damping in organic material-rich coastal waters resulted in a net (spatio-temporally averaged) reduction of approximately 50% in wave slope variance relative to the open ocean for low to moderate wind speeds. This reduction of wave slope variance is understood to result in a corresponding reduction in momentum input to the wave field. This significant effect had thus far evaded quantification due in large part to the enormous range of scales required for its description-spanning the sea surface microlayer to the ocean submesoscale.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240385"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-13DOI: 10.1098/rsif.2024.0415
John M Peloquin, Dawn M Elliott
Application of biomechanical models relies on model parameters estimated from experimental data. Parameter non-identifiability, when the same model output can be produced by many sets of parameter values, introduces severe errors yet has received relatively little attention in biomechanics and is subtle enough to remain unnoticed in the absence of deliberate verification. The present work develops a global identifiability analysis method in which cluster analysis and singular value decomposition are applied to vectors of parameter-output variable correlation coefficients. This method provides a visual representation of which specific experimental design elements are beneficial or harmful in terms of parameter identifiability, supporting the correction of deficiencies in the test protocol prior to testing physical specimens. The method was applied to a representative nonlinear biphasic model for cartilaginous tissue, demonstrating that confined compression data does not provide identifiability for the biphasic model parameters. This result was confirmed by two independent analyses: local analysis of the Hessian of a sum-of-squares error cost function and observation of the behaviour of two optimization algorithms. Therefore, confined compression data are insufficient for the calibration of general-purpose biphasic models. Identifiability analysis by these or other methods is strongly recommended when planning future experiments.
{"title":"Global and local identifiability analysis of a nonlinear biphasic constitutive model in confined compression.","authors":"John M Peloquin, Dawn M Elliott","doi":"10.1098/rsif.2024.0415","DOIUrl":"10.1098/rsif.2024.0415","url":null,"abstract":"<p><p>Application of biomechanical models relies on model parameters estimated from experimental data. Parameter non-identifiability, when the same model output can be produced by many sets of parameter values, introduces severe errors yet has received relatively little attention in biomechanics and is subtle enough to remain unnoticed in the absence of deliberate verification. The present work develops a global identifiability analysis method in which cluster analysis and singular value decomposition are applied to vectors of parameter-output variable correlation coefficients. This method provides a visual representation of which specific experimental design elements are beneficial or harmful in terms of parameter identifiability, supporting the correction of deficiencies in the test protocol prior to testing physical specimens. The method was applied to a representative nonlinear biphasic model for cartilaginous tissue, demonstrating that confined compression data does not provide identifiability for the biphasic model parameters. This result was confirmed by two independent analyses: local analysis of the Hessian of a sum-of-squares error cost function and observation of the behaviour of two optimization algorithms. Therefore, confined compression data are insufficient for the calibration of general-purpose biphasic models. Identifiability analysis by these or other methods is strongly recommended when planning future experiments.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240415"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557236/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-06DOI: 10.1098/rsif.2024.0283
Maria Tătulea-Codrean, Eric Lauga
Numerous studies have explored the link between bacterial swimming and the number of flagella, a distinguishing feature of motile multi-flagellated bacteria. We revisit this open question using augmented slender-body theory simulations, in which we resolve the full hydrodynamic interactions within a bundle of helical filaments rotating and translating in synchrony. Unlike previous studies, our model considers the full torque-speed relationship of the bacterial flagellar motor, revealing its significant impact on multi-flagellated swimming. Because the viscous load per motor decreases with the flagellar number, the bacterial flagellar motor transitions from the high-load to the low-load regime at a critical number of filaments, leading to bacterial slowdown as further flagella are added to the bundle. We explain the physical mechanism behind the observed slowdown as an interplay between the load-dependent generation of torque by the motor, and the load-reducing cooperativity between flagella, which consists of both hydrodynamic and non-hydrodynamic components. The theoretically predicted critical number of flagella is remarkably close to the values reported for the model organism Escherichia coli. Our model further predicts that the critical number of flagella increases with viscosity, suggesting that bacteria can enhance their swimming capacity by growing more flagella in more viscous environments, consistent with empirical observations.
{"title":"Physical mechanism reveals bacterial slowdown above a critical number of flagella.","authors":"Maria Tătulea-Codrean, Eric Lauga","doi":"10.1098/rsif.2024.0283","DOIUrl":"10.1098/rsif.2024.0283","url":null,"abstract":"<p><p>Numerous studies have explored the link between bacterial swimming and the number of flagella, a distinguishing feature of motile multi-flagellated bacteria. We revisit this open question using augmented slender-body theory simulations, in which we resolve the full hydrodynamic interactions within a bundle of helical filaments rotating and translating in synchrony. Unlike previous studies, our model considers the full torque-speed relationship of the bacterial flagellar motor, revealing its significant impact on multi-flagellated swimming. Because the viscous load per motor decreases with the flagellar number, the bacterial flagellar motor transitions from the high-load to the low-load regime at a critical number of filaments, leading to bacterial slowdown as further flagella are added to the bundle. We explain the physical mechanism behind the observed slowdown as an interplay between the load-dependent generation of torque by the motor, and the load-reducing cooperativity between flagella, which consists of both hydrodynamic and non-hydrodynamic components. The theoretically predicted critical number of flagella is remarkably close to the values reported for the model organism <i>Escherichia coli</i>. Our model further predicts that the critical number of flagella increases with viscosity, suggesting that bacteria can enhance their swimming capacity by growing more flagella in more viscous environments, consistent with empirical observations.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240283"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using friction modulation to simulate fabrics with a tactile stimulator (i.e. virtual surface) is not sufficient to render fabric touch and even more so for hairy fabrics. We hypothesized that seeing the pile of the velvet darken or lighten depending on changes in the finger movement direction on the virtual surface should improve the velvet fabric rendering. Participants actively rubbed a tactile device or a velvet fabric looking at a screen that showed a synthesized image of a velvet that either remained static (V-static) or darkening/lightening with the direction of touch (V-moving). We showed that in V-moving condition, the touched surface was always perceived rougher, which is a descriptor of a real velvet (Experiment 1). Using electroencephalography and sources localization analyses, we found increased activity in the occipital and inferior parietal lobes (Experiment 2) when seeing dark and shining traces during back-and-forth finger movements over the virtual surface. This suggests that these two posterior cortical regions work together to evaluate visuo-tactile congruence between the seen and the felt (tactile). The visuo-tactile binding, evidenced by neural synchronization (specifically, theta band (5-7 Hz) oscillation) in the left inferior posterior parietal lobule, is consistent with enhanced integration of information and probably contributed to the emergence of a more realistic velvet representation.
{"title":"Seeing the piles of the velvet bending under our finger sliding over a tactile stimulator improves the feeling of the fabric.","authors":"Laurence Mouchnino, Brigitte Camillieri, Jenny Faucheu, Mihaela Juganaru, Alix Moinon, Jean Blouin, Marie-Ange Bueno","doi":"10.1098/rsif.2024.0368","DOIUrl":"10.1098/rsif.2024.0368","url":null,"abstract":"<p><p>Using friction modulation to simulate fabrics with a tactile stimulator (i.e. virtual surface) is not sufficient to render fabric touch and even more so for hairy fabrics. We hypothesized that seeing the pile of the velvet darken or lighten depending on changes in the finger movement direction on the virtual surface should improve the velvet fabric rendering. Participants actively rubbed a tactile device or a velvet fabric looking at a screen that showed a synthesized image of a velvet that either remained static (V-static) or darkening/lightening with the direction of touch (V-moving). We showed that in V-moving condition, the touched surface was always perceived rougher, which is a descriptor of a real velvet (Experiment 1). Using electroencephalography and sources localization analyses, we found increased activity in the occipital and inferior parietal lobes (Experiment 2) when seeing dark and shining traces during back-and-forth finger movements over the virtual surface. This suggests that these two posterior cortical regions work together to evaluate visuo-tactile congruence between the seen and the felt (tactile). The visuo-tactile binding, evidenced by neural synchronization (specifically, theta band (5-7 Hz) oscillation) in the left inferior posterior parietal lobule, is consistent with enhanced integration of information and probably contributed to the emergence of a more realistic velvet representation.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240368"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-20DOI: 10.1098/rsif.2024.0622
Robert M Hazen, Peter C Burns, H James Cleaves Ii, Robert T Downs, Sergey V Krivovichev, Michael L Wong
We clarify misunderstandings of Walker et al. (Walker et al. 2024 J. R. Soc. Interface 21, 20240367 (doi:10.1098/rsif.2024.0367)) related to studies of the assembly pathways of molecular subunits in minerals. The finding that these subunits have calculated assembly pathways less than approximately 25 informs a central premise of Assembly Theory-that only life can produce numerous copies of molecules with assembly indices above a threshold value. What that threshold value might be, and whether the same value applies to chemical systems as different as organic and inorganic molecules, are questions deserving of additional study.
我们澄清了沃克等人(Walker et al. 2024 J. R. Soc. Interface 21, 20240367 (doi:10.1098/rsif.2024.0367))对矿物中分子亚基组装途径研究的误解。这些亚基的组装路径计算结果小于约 25,这一发现为组装理论提供了一个核心前提--只有生命才能产生大量组装指数超过阈值的分子拷贝。至于这个临界值是多少,以及这个临界值是否适用于有机分子和无机分子这样不同的化学系统,这些问题都值得进一步研究。
{"title":"Reply to 'Experimental measurement of assembly indices are required to determine the threshold for life'.","authors":"Robert M Hazen, Peter C Burns, H James Cleaves Ii, Robert T Downs, Sergey V Krivovichev, Michael L Wong","doi":"10.1098/rsif.2024.0622","DOIUrl":"10.1098/rsif.2024.0622","url":null,"abstract":"<p><p>We clarify misunderstandings of Walker et al. (Walker <i>et al.</i> 2024 <i>J. R. Soc. Interface</i> 21, 20240367 (doi:10.1098/rsif.2024.0367)) related to studies of the assembly pathways of molecular subunits in minerals. The finding that these subunits have calculated assembly pathways less than approximately 25 informs a central premise of Assembly Theory-that only life can produce numerous copies of molecules with assembly indices above a threshold value. What that threshold value might be, and whether the same value applies to chemical systems as different as organic and inorganic molecules, are questions deserving of additional study.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240622"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-13DOI: 10.1098/rsif.2024.0218
Vira Raichenko, Nikolai Rosenthal, Michaela Eder, Myfanwy E Evans
Biological materials display a wide array of functionality, often dictated by complicated microstructures. New geometric and topological strategies allow one to describe the microstructures in a precise and systematic way. This article describes the application of topological persistence and other geometric methods to the microstructural analysis of three-dimensional X-ray micro-computed tomography scans of the Bombyx mori silkworm cocoons. These methods allow conclusions to be drawn about pore space gradients, silk fibre thickness gradients and fibre alignment within the cocoon. The study demonstrates the applicability of these topological and geometric methods to quantify and characterize fibrous materials.
生物材料具有多种功能,通常由复杂的微观结构决定。新的几何和拓扑策略可以精确、系统地描述微观结构。本文介绍了拓扑持久性和其他几何方法在蚕茧三维 X 射线显微计算机断层扫描微观结构分析中的应用。通过这些方法,可以对蚕茧内的孔隙梯度、丝纤维厚度梯度和纤维排列得出结论。这项研究表明,这些拓扑和几何方法适用于量化和表征纤维材料。
{"title":"Cocoon microstructures through the lens of topological persistence.","authors":"Vira Raichenko, Nikolai Rosenthal, Michaela Eder, Myfanwy E Evans","doi":"10.1098/rsif.2024.0218","DOIUrl":"10.1098/rsif.2024.0218","url":null,"abstract":"<p><p>Biological materials display a wide array of functionality, often dictated by complicated microstructures. New geometric and topological strategies allow one to describe the microstructures in a precise and systematic way. This article describes the application of topological persistence and other geometric methods to the microstructural analysis of three-dimensional X-ray micro-computed tomography scans of the <i>Bombyx mori</i> silkworm cocoons. These methods allow conclusions to be drawn about pore space gradients, silk fibre thickness gradients and fibre alignment within the cocoon. The study demonstrates the applicability of these topological and geometric methods to quantify and characterize fibrous materials.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240218"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radiation-induced pulmonary fibrosis (RIPF) is a severe late-stage complication of radiotherapy (RT) to the chest area, typically used in lung cancer treatment. This condition is characterized by the gradual and irreversible replacement of healthy lung tissue with fibrous scar tissue, leading to decreased lung function, reduced oxygen exchange and critical respiratory deficiencies. Currently, predicting and managing lung fibrosis post-RT remains challenging, with limited preventive and treatment options. Accurate prediction of fibrosis onset and progression is therefore clinically crucial. We present a personalized in silico model for pulmonary fibrosis that encompasses tumour regression, fibrosis development and lung tissue remodelling post-radiation. Our continuum-based model was developed using data from 12 RT-treated lung cancer patients and integrates computed tomography (CT) and dosimetry data to simulate the spatio-temporal evolution of fibrosis. We demonstrate the ability of the in silico model to capture the extent of fibrosis in the entire cohort with a less than 1% deviation from clinical observations, in addition to providing quantitative metrics of spatial similarity. These findings underscore the potential of the model to improve treatment planning and risk assessment, paving the way for more personalized and effective management of RIPF.
{"title":"Personalized <i>in silico</i> model for radiation-induced pulmonary fibrosis.","authors":"Eleftherios Ioannou, Myrianthi Hadjicharalambous, Anastasia Malai, Elisavet Papageorgiou, Antri Peraticou, Nicos Katodritis, Dimitrios Vomvas, Vasileios Vavourakis","doi":"10.1098/rsif.2024.0525","DOIUrl":"10.1098/rsif.2024.0525","url":null,"abstract":"<p><p>Radiation-induced pulmonary fibrosis (RIPF) is a severe late-stage complication of radiotherapy (RT) to the chest area, typically used in lung cancer treatment. This condition is characterized by the gradual and irreversible replacement of healthy lung tissue with fibrous scar tissue, leading to decreased lung function, reduced oxygen exchange and critical respiratory deficiencies. Currently, predicting and managing lung fibrosis post-RT remains challenging, with limited preventive and treatment options. Accurate prediction of fibrosis onset and progression is therefore clinically crucial. We present a personalized <i>in silico</i> model for pulmonary fibrosis that encompasses tumour regression, fibrosis development and lung tissue remodelling post-radiation. Our continuum-based model was developed using data from 12 RT-treated lung cancer patients and integrates computed tomography (CT) and dosimetry data to simulate the spatio-temporal evolution of fibrosis. We demonstrate the ability of the <i>in silico</i> model to capture the extent of fibrosis in the entire cohort with a less than 1% deviation from clinical observations, in addition to providing quantitative metrics of spatial similarity. These findings underscore the potential of the model to improve treatment planning and risk assessment, paving the way for more personalized and effective management of RIPF.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240525"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Humans have been able to tackle biosphere complexities by acting as ecosystem engineers, profoundly changing the flows of matter, energy and information. This includes major innovations that allowed to reduce and control the impact of extreme events. Modelling the evolution of such adaptive dynamics can be challenging, given the potentially large number of individual and environmental variables involved. This article shows how to address this problem by using fire as the source of extreme events. We implement a simulated environment where fire propagates on a spatial landscape, and a group of artificial agents learn how to harvest and exploit trees while avoiding the damaging effects of fire spreading. The agents need to solve a conflict to reach a group-level optimal state: while tree harvesting reduces the propagation of fires, it also reduces the availability of resources provided by trees. It is shown that the system displays two major evolutionary innovations that end up in an ecological engineering strategy that favours high biomass along with the suppression of large fires. The implications for potential artificial intelligence management of complex ecosystems are discussed.
{"title":"Cooperative control of environmental extremes by artificial intelligent agents.","authors":"Martí Sánchez-Fibla, Clément Moulin-Frier, Ricard Solé","doi":"10.1098/rsif.2024.0344","DOIUrl":"10.1098/rsif.2024.0344","url":null,"abstract":"<p><p>Humans have been able to tackle biosphere complexities by acting as ecosystem engineers, profoundly changing the flows of matter, energy and information. This includes major innovations that allowed to reduce and control the impact of extreme events. Modelling the evolution of such adaptive dynamics can be challenging, given the potentially large number of individual and environmental variables involved. This article shows how to address this problem by using fire as the source of extreme events. We implement a simulated environment where fire propagates on a spatial landscape, and a group of artificial agents learn how to harvest and exploit trees while avoiding the damaging effects of fire spreading. The agents need to solve a conflict to reach a group-level optimal state: while tree harvesting reduces the propagation of fires, it also reduces the availability of resources provided by trees. It is shown that the system displays two major evolutionary innovations that end up in an ecological engineering strategy that favours high biomass along with the suppression of large fires. The implications for potential artificial intelligence management of complex ecosystems are discussed.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240344"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-20DOI: 10.1098/rsif.2024.0367
Sara I Walker, Cole Mathis, Stuart Marshall, Leroy Cronin
Assembly theory (AT) aims to distinguish living from non-living systems by explaining and quantifying selection and evolution. The theory proposes that the degree of assembly depends on the number of complex objects, with complexity measured using a combination of the object's assembly index (AI) and its abundance. We previously provided experimental evidence supporting AT's predictive power, finding that abiotic systems do not randomly produce organic molecules with an AI greater than approximately 15 in detectable amounts. Hazen et al. (Hazen et al. 2024 J. R. Soc. Interface21, 20230632. (doi:10.1098/rsif.2023.0632)) proposed inorganic molecules that theoretically have AIs greater than 15, suggesting similar complexity to biological molecules. However, our AIs are experimentally measured for organic, covalently bonded molecules, whereas Hazen's are theoretical, derived from crystal structures of charged units that are not isolable in solution. This distinction underscores the challenge in experimentally validating theoretical AIs.
组装理论(AT)旨在通过解释和量化选择与进化来区分生命系统与非生命系统。该理论认为,组装程度取决于复杂物体的数量,而复杂性则通过物体的组装指数(AI)和丰度的组合来衡量。我们之前提供的实验证据支持了AT的预测能力,发现非生物系统不会随机产生可检测到的AI大于约15的有机分子。Hazen 等人 (Hazen et al. 2024 J. R. Soc. Interface 21, 20230632.(doi:10.1098/rsif.2023.0632)提出的无机分子理论上具有大于 15 的人工合成指数,表明其复杂性与生物分子类似。然而,我们的 AIs 是通过实验测得的有机共价键分子的 AIs,而 Hazen 的 AIs 则是理论上的,是从溶液中无法分离的带电单元的晶体结构中推导出来的。这一区别凸显了实验验证理论 AIs 所面临的挑战。
{"title":"Experimentally measured assembly indices are required to determine the threshold for life.","authors":"Sara I Walker, Cole Mathis, Stuart Marshall, Leroy Cronin","doi":"10.1098/rsif.2024.0367","DOIUrl":"10.1098/rsif.2024.0367","url":null,"abstract":"<p><p>Assembly theory (AT) aims to distinguish living from non-living systems by explaining and quantifying selection and evolution. The theory proposes that the degree of assembly depends on the number of complex objects, with complexity measured using a combination of the object's assembly index (AI) and its abundance. We previously provided experimental evidence supporting AT's predictive power, finding that abiotic systems do not randomly produce organic molecules with an AI greater than approximately 15 in detectable amounts. Hazen <i>et al</i>. (Hazen <i>et al</i>. 2024 <i>J. R. Soc. Interface</i> <b>21</b>, 20230632. (doi:10.1098/rsif.2023.0632)) proposed inorganic molecules that theoretically have AIs greater than 15, suggesting similar complexity to biological molecules. However, our AIs are experimentally measured for organic, covalently bonded molecules, whereas Hazen's are theoretical, derived from crystal structures of charged units that are not isolable in solution. This distinction underscores the challenge in experimentally validating theoretical AIs.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240367"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}