Investigating the impact of surface treatments on tensile bond strength between pediatric prefabricated zirconia crowns and primary maxillary incisors with various types of luting cement: an in vitro study.
{"title":"Investigating the impact of surface treatments on tensile bond strength between pediatric prefabricated zirconia crowns and primary maxillary incisors with various types of luting cement: an in vitro study.","authors":"W Chinadet, P Pengpue, P Chaijareenont","doi":"10.1007/s40368-024-00926-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to evaluate the effects of two surface treatments on the tensile bond strength of prefabricated zirconia crowns (PZCs) using bioactive and resin cements.</p><p><strong>Methods: </strong>Forty extracted human primary maxillary incisors were prepared and divided into four groups based on surface treatment and cement type: (1) sandblast with bioactive cement, (2) sandblast with resin cement, (3) 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) with bioactive cement, and (4) 10-MDP with resin cement. After 24 h of cementation, specimens underwent 5000 thermocycling cycles between 5 °C and 55 °C. Tensile bond strengths were measured using a universal testing machine. The data were analyzed using two-way ANOVA and Tukey's post hoc test, with significance set at p < 0.05.</p><p><strong>Results: </strong>The mean tensile bond strengths observed were 2.25 ± 1.27 MPa for sandblast with bioactive cement, 1.39 ± 0.95 MPa for sandblast with resin cement, 2.45 ± 1.15 MPa for 10-MDP with bioactive cement, and 1.68 ± 1.03 MPa for 10-MDP with resin cement. Significant improvements in bond strength were observed in the bioactive cement group treated with 10-MDP compared to those treated with sandblasting (p < 0.05). The 10-MDP treatment did not enhance bond strength for the resin cement compared to sandblasting.</p><p><strong>Conclusions: </strong>Bioactive cement generally provides a higher tensile bond strength than resin cement. While 10-MDP treatment enhances bond strength when used with bioactive cement, it does not show a similar enhancement when used with resin cement compared to sandblasting, indicating its effectiveness is selective based on the type of cement used.</p>","PeriodicalId":47603,"journal":{"name":"European Archives of Paediatric Dentistry","volume":" ","pages":"677-684"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Paediatric Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40368-024-00926-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to evaluate the effects of two surface treatments on the tensile bond strength of prefabricated zirconia crowns (PZCs) using bioactive and resin cements.
Methods: Forty extracted human primary maxillary incisors were prepared and divided into four groups based on surface treatment and cement type: (1) sandblast with bioactive cement, (2) sandblast with resin cement, (3) 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) with bioactive cement, and (4) 10-MDP with resin cement. After 24 h of cementation, specimens underwent 5000 thermocycling cycles between 5 °C and 55 °C. Tensile bond strengths were measured using a universal testing machine. The data were analyzed using two-way ANOVA and Tukey's post hoc test, with significance set at p < 0.05.
Results: The mean tensile bond strengths observed were 2.25 ± 1.27 MPa for sandblast with bioactive cement, 1.39 ± 0.95 MPa for sandblast with resin cement, 2.45 ± 1.15 MPa for 10-MDP with bioactive cement, and 1.68 ± 1.03 MPa for 10-MDP with resin cement. Significant improvements in bond strength were observed in the bioactive cement group treated with 10-MDP compared to those treated with sandblasting (p < 0.05). The 10-MDP treatment did not enhance bond strength for the resin cement compared to sandblasting.
Conclusions: Bioactive cement generally provides a higher tensile bond strength than resin cement. While 10-MDP treatment enhances bond strength when used with bioactive cement, it does not show a similar enhancement when used with resin cement compared to sandblasting, indicating its effectiveness is selective based on the type of cement used.
期刊介绍:
The aim and scope of European Archives of Paediatric Dentistry (EAPD) is to promote research in all aspects of dentistry for children, including interceptive orthodontics and studies on children and young adults with special needs. The EAPD focuses on the publication and critical evaluation of clinical and basic science research related to children. The EAPD will consider clinical case series reports, followed by the relevant literature review, only where there are new and important findings of interest to Paediatric Dentistry and where details of techniques or treatment carried out and the success of such approaches are given.