Ziyu Zhang, Shuyan Chen, Hong Yao, Ghim Ping Ong, Yongfeng Ma
{"title":"Recognition of aggressive driving behavior under abnormal weather based on Convolutional Neural Network and transfer learning.","authors":"Ziyu Zhang, Shuyan Chen, Hong Yao, Ghim Ping Ong, Yongfeng Ma","doi":"10.1080/15389588.2024.2378131","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Aggressive driving behavior can lead to potential traffic collision risks, and abnormal weather conditions can exacerbate this behavior. This study aims to develop recognition models for aggressive driving under various climate conditions, addressing the challenge of collecting sufficient data in abnormal weather.</p><p><strong>Methods: </strong>Driving data was collected in a virtual environment using a driving simulator under both normal and abnormal weather conditions. A model was trained on data from normal weather (source domain) and then transferred to foggy and rainy weather conditions (target domains) for retraining and fine-tuning. The K-means algorithm clustered driving behavior instances into three styles: aggressive, normal, and cautious. These clusters were used as labels for each instance in training a CNN model. The pre-trained CNN model was then transferred and fine-tuned for abnormal weather conditions.</p><p><strong>Results: </strong>The transferred models showed improved recognition performance, achieving an accuracy score of 0.81 in both foggy and rainy weather conditions. This surpassed the non-transferred models' accuracy scores of 0.72 and 0.69, respectively.</p><p><strong>Conclusions: </strong>The study demonstrates the significant application value of transfer learning in recognizing aggressive driving behaviors with limited data. It also highlights the feasibility of using this approach to address the challenges of driving behavior recognition under abnormal weather conditions.</p>","PeriodicalId":54422,"journal":{"name":"Traffic Injury Prevention","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic Injury Prevention","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15389588.2024.2378131","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Aggressive driving behavior can lead to potential traffic collision risks, and abnormal weather conditions can exacerbate this behavior. This study aims to develop recognition models for aggressive driving under various climate conditions, addressing the challenge of collecting sufficient data in abnormal weather.
Methods: Driving data was collected in a virtual environment using a driving simulator under both normal and abnormal weather conditions. A model was trained on data from normal weather (source domain) and then transferred to foggy and rainy weather conditions (target domains) for retraining and fine-tuning. The K-means algorithm clustered driving behavior instances into three styles: aggressive, normal, and cautious. These clusters were used as labels for each instance in training a CNN model. The pre-trained CNN model was then transferred and fine-tuned for abnormal weather conditions.
Results: The transferred models showed improved recognition performance, achieving an accuracy score of 0.81 in both foggy and rainy weather conditions. This surpassed the non-transferred models' accuracy scores of 0.72 and 0.69, respectively.
Conclusions: The study demonstrates the significant application value of transfer learning in recognizing aggressive driving behaviors with limited data. It also highlights the feasibility of using this approach to address the challenges of driving behavior recognition under abnormal weather conditions.
期刊介绍:
The purpose of Traffic Injury Prevention is to bridge the disciplines of medicine, engineering, public health and traffic safety in order to foster the science of traffic injury prevention. The archival journal focuses on research, interventions and evaluations within the areas of traffic safety, crash causation, injury prevention and treatment.
General topics within the journal''s scope are driver behavior, road infrastructure, emerging crash avoidance technologies, crash and injury epidemiology, alcohol and drugs, impact injury biomechanics, vehicle crashworthiness, occupant restraints, pedestrian safety, evaluation of interventions, economic consequences and emergency and clinical care with specific application to traffic injury prevention. The journal includes full length papers, review articles, case studies, brief technical notes and commentaries.