Rational design of biomass-derived electrocatalysts for hydrogen/oxygen evolution reactions: a synthetic strategy for multiple components and their corresponding properties
Xiuzheng Zhuang , Huiyi Liang , Xiaohong Hu , Song Li , Xinghua Zhang , Qi Zhang , Longlong Ma
{"title":"Rational design of biomass-derived electrocatalysts for hydrogen/oxygen evolution reactions: a synthetic strategy for multiple components and their corresponding properties","authors":"Xiuzheng Zhuang , Huiyi Liang , Xiaohong Hu , Song Li , Xinghua Zhang , Qi Zhang , Longlong Ma","doi":"10.1039/d4gc02100b","DOIUrl":null,"url":null,"abstract":"<div><p>H<sub>2</sub> produced <em>via</em> water electrolysis is a promising alternative to traditional energy, with electrodes playing a dominant role in the production process. To date, numerous studies have screened different types of biomass as precursors to synthesize electrocatalysts with practical functions, but the clear conclusions in this field are unfortunately absent. Therefore, herein, the recent advances in biomass-derived electrocatalysts for HER/OER processes are summarized, focusing on the design of carbonaceous structures from multiple components, the incorporation of supports with single or several metals and the available methods for their modification <em>via</em> defect engineering. Subsequently, the overall efficiency of electrochemical water splitting on a biomass-derived electrolyzer is discussed in depth together with the upgraded strategy for the so-called electrosynthesis of chemicals paired with H<sub>2</sub> production. Finally, the technical bottlenecks that need to be properly resolved in the near future for the development of these electrocatalysts originating from biomass are presented. It can be expected that this review will not only contribute to the in-depth knowledge on the rational synthesis of biomass-derived materials as electrodes, but also present new opportunities for the valorization of biomass resources in electrochemical applications.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224006812","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
H2 produced via water electrolysis is a promising alternative to traditional energy, with electrodes playing a dominant role in the production process. To date, numerous studies have screened different types of biomass as precursors to synthesize electrocatalysts with practical functions, but the clear conclusions in this field are unfortunately absent. Therefore, herein, the recent advances in biomass-derived electrocatalysts for HER/OER processes are summarized, focusing on the design of carbonaceous structures from multiple components, the incorporation of supports with single or several metals and the available methods for their modification via defect engineering. Subsequently, the overall efficiency of electrochemical water splitting on a biomass-derived electrolyzer is discussed in depth together with the upgraded strategy for the so-called electrosynthesis of chemicals paired with H2 production. Finally, the technical bottlenecks that need to be properly resolved in the near future for the development of these electrocatalysts originating from biomass are presented. It can be expected that this review will not only contribute to the in-depth knowledge on the rational synthesis of biomass-derived materials as electrodes, but also present new opportunities for the valorization of biomass resources in electrochemical applications.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.