{"title":"Catalyst-free synthesis of hydrazino-containing glycine derivatives via a diaziridine in situ formation/ring-opening cascade†","authors":"Chang-Long Rong , Qiang-Qiang Li , Jun Xuan","doi":"10.1039/d4gc02565b","DOIUrl":null,"url":null,"abstract":"<div><p>Glycine derivatives are prevalent structural motifs that can be easily found in many bioactive molecules and natural isolates. To date, chemical synthesis of hydrazino-containing glycine derivatives has mainly focused on the utilization of metal catalysts or light-irradiation methods. Herein, we report a three-component reaction of amines, azodicarboxylates, and diazoalkanes under green and sustainable reaction conditions, leading to a wide range of hydrazino-containing glycine derivatives in good to excellent yields. Compared to the reported methods, the as-developed method does not require catalysts or light irradiation. The success of the scale-up reaction, synthetic transformation of the formed glycine products, and the direct aqueous media synthesis further rendered the method attractive and valuable. Control experiments together with detailed mechanism studies revealed that the <em>in situ</em> formed diaziridines are the key reaction intermediates.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224006988","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glycine derivatives are prevalent structural motifs that can be easily found in many bioactive molecules and natural isolates. To date, chemical synthesis of hydrazino-containing glycine derivatives has mainly focused on the utilization of metal catalysts or light-irradiation methods. Herein, we report a three-component reaction of amines, azodicarboxylates, and diazoalkanes under green and sustainable reaction conditions, leading to a wide range of hydrazino-containing glycine derivatives in good to excellent yields. Compared to the reported methods, the as-developed method does not require catalysts or light irradiation. The success of the scale-up reaction, synthetic transformation of the formed glycine products, and the direct aqueous media synthesis further rendered the method attractive and valuable. Control experiments together with detailed mechanism studies revealed that the in situ formed diaziridines are the key reaction intermediates.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.