{"title":"Designing cost-performance porous thermoelectric materials by interface engineering through atomic layer deposition","authors":"","doi":"10.1016/j.jmst.2024.06.037","DOIUrl":null,"url":null,"abstract":"<p>The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting, but its low cost-effectiveness severely restricts its large-scale application. The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost. However, the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface between the matrix and pores, ultimately leading to decreased figure of merit, <em>ZT</em>. Here, we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> for preparing high-performance porous thermoelectric materials. Experimental results indicate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering, thereby optimizing carrier/phonon transport behaviors, and effectively increasing the <em>ZT</em> by 23.2% (from 0.99 to 1.22 at 350 K). Besides, our strategy has excellent universality confirmed by its effectiveness in improving the <em>ZT</em> of Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub>, therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.06.037","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting, but its low cost-effectiveness severely restricts its large-scale application. The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost. However, the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface between the matrix and pores, ultimately leading to decreased figure of merit, ZT. Here, we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi0.5Sb1.5Te3 for preparing high-performance porous thermoelectric materials. Experimental results indicate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering, thereby optimizing carrier/phonon transport behaviors, and effectively increasing the ZT by 23.2% (from 0.99 to 1.22 at 350 K). Besides, our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi2Te2.7Se0.3, therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.