首页 > 最新文献

Journal of Materials Science & Technology最新文献

英文 中文
Achieving magnesium alloy sheet isotropy via a multi-DoF forming process 通过多自由度成形工艺实现镁合金板材各向同性
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-10 DOI: 10.1016/j.jmst.2026.02.005
Fang Chai, Xinghui Han, Chaoyuan Tian, Qifu Chen, Xuan Hu, Wuhao Zhuang, Fangyan Zheng, Lin Hua
Severe anisotropy, which originates from intensive basal texture during a single-degree-of-freedom process, is the major bottleneck for the wide application of lightweight magnesium alloy sheets. Herein, we innovatively report a multi-degrees-of-freedom (multi-DoF) forming process and efficiently achieve AZ91 alloy sheet isotropy. Our research demonstrates that as-extruded sheets exhibit obvious anisotropy resulting from anisotropic textures. Owing to the fact that the forces of multi-DoF forming are always with slight inclinations to the axial direction (AD), the c-axes of these anisotropic textures possess large angles to force direction, which leads to these anisotropic textures displaying soft orientation and consequently contribute to the uniform non-basal slip activation. This uniform slip behavior leads to all these anisotropic textures spreading towards AD and gradually forming the isotropic texture. Because of the same deformation mode, the isotropic textures also have a similar proportion. The isotropic textures contribute to excellent isotropy, with the maximum disparity of strength-plasticity decreasing from 55 MPa-5.4% in the as-extruded condition to 8 MPa-0.2%. Our findings are expected to provide a novel strategy for achieving isotropy and brightening the prospect of magnesium alloy sheets.
严重的各向异性是制约镁合金薄板轻量化应用的主要瓶颈,其主要原因是单自由度加工过程中基底织构的强度较大。在此,我们创新地报道了一种多自由度(多自由度)成形工艺,有效地实现了AZ91合金板材的各向同性。我们的研究表明,由于各向异性织构的存在,挤压态板材表现出明显的各向异性。由于各向异性织构的多自由度成形力总是偏向于轴向(AD),因此各向异性织构的c轴与力方向有较大的夹角,这使得这些各向异性织构呈现软取向,从而有助于均匀的非基底滑移激活。这种均匀的滑移行为导致所有这些各向异性织构向AD扩散并逐渐形成各向同性织构。由于相同的变形模式,各向同性纹理也具有相似的比例。各向同性织构使材料具有良好的各向同性,最大强度塑性差从挤压状态下的55 MPa-5.4%降至8 MPa-0.2%。我们的发现有望为实现各向同性和照亮镁合金板的前景提供一种新的策略。
{"title":"Achieving magnesium alloy sheet isotropy via a multi-DoF forming process","authors":"Fang Chai, Xinghui Han, Chaoyuan Tian, Qifu Chen, Xuan Hu, Wuhao Zhuang, Fangyan Zheng, Lin Hua","doi":"10.1016/j.jmst.2026.02.005","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.02.005","url":null,"abstract":"Severe anisotropy, which originates from intensive basal texture during a single-degree-of-freedom process, is the major bottleneck for the wide application of lightweight magnesium alloy sheets. Herein, we innovatively report a multi-degrees-of-freedom (multi-DoF) forming process and efficiently achieve AZ91 alloy sheet isotropy. Our research demonstrates that as-extruded sheets exhibit obvious anisotropy resulting from anisotropic textures. Owing to the fact that the forces of multi-DoF forming are always with slight inclinations to the axial direction (AD), the <em>c</em>-axes of these anisotropic textures possess large angles to force direction, which leads to these anisotropic textures displaying soft orientation and consequently contribute to the uniform non-basal slip activation. This uniform slip behavior leads to all these anisotropic textures spreading towards AD and gradually forming the isotropic texture. Because of the same deformation mode, the isotropic textures also have a similar proportion. The isotropic textures contribute to excellent isotropy, with the maximum disparity of strength-plasticity decreasing from 55 MPa-5.4% in the as-extruded condition to 8 MPa-0.2%. Our findings are expected to provide a novel strategy for achieving isotropy and brightening the prospect of magnesium alloy sheets.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"25 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Record high-temperature piezoelectric performance in BNKT-based single crystals via local heterostructure design 通过局部异质结构设计,记录了bnkt基单晶的高温压电性能
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-07 DOI: 10.1016/j.jmst.2026.02.002
Jialin Niu, Yongxing Wei, Yanghuan Deng, Changqing Jin, Changpeng Guan, Siyuan Dong, Zhonghua Dai, Zengzhe Xi, Zengyun Jian, Zhong Yang, Li Jin
As a promising lead-free alternative to Pb-based piezoelectric materials, (Bi,Na,K)TiO<sub>3</sub> (BNKT)-based single crystals have attracted increasing interest for high-performance electromechanical applications. In this work, we report a local heterostructure engineering strategy to achieves record high temperature piezoelectric performance in BNKT-based single crystals. MnO<sub>2</sub> was introduced into flux-grown (Bi<sub>0.48</sub>Na<sub>0.425</sub>K<sub>0.055</sub>Ba<sub>0.04</sub>)TiO<sub>3</sub> single crystals (BNKBT–Mn), resulting in pronounced nanoscale compositional/structural heterogeneity. This engineered local disorder dramatically modifies polarization dynamics and domain configurations: at room temperature, the modified crystals exhibit a large piezoelectric coefficient <em>d</em><sub>33</sub> = 513 pC/N while retaining a relatively high depolarization temperature (<em>T</em><sub>d</sub>) of 148°C. A maximum piezoelectric coefficient of 1257 pC/N is achieved at 147°C, together with a large unipolar electrostrain of 1.24% and an exceptionally high converse piezoelectric coefficient <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mo is="true">(</mo><msubsup is="true"><mi is="true">d</mi><mrow is="true"><mn is="true">33</mn></mrow><mo is="true">*</mo></msubsup></mrow></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="3.24ex" role="img" style="vertical-align: -1.043ex;" viewbox="0 -945.9 1786.8 1395" width="4.15ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><use is="true" xlink:href="#MJSZ1-28"></use><g is="true" transform="translate(458,0)"><g is="true"><use xlink:href="#MJMATHI-64"></use></g><g is="true" transform="translate(524,320)"><use transform="scale(0.707)" xlink:href="#MJMAIN-2217"></use></g><g is="true" transform="translate(520,-307)"><g is="true"><use transform="scale(0.707)" xlink:href="#MJMAIN-33"></use><use transform="scale(0.707)" x="500" xlink:href="#MJMAIN-33" y="0"></use></g></g></g></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mo is="true">(</mo><msubsup is="true"><mi is="true">d</mi><mrow is="true"><mn is="true">33</mn></mrow><mo is="true">*</mo></msubsup></mrow></math></span></span><script type="math/mml"><math><mrow is="true"><mo is="true">(</mo><msubsup is="true"><mi is="true">d</mi><mrow is="true"><mn is="true">33</mn></mrow><mo is="true">*</mo></msubsup></mrow></math></script></span>) of 1771 pm/V. Further analyses indicate that the giant high-temperature piezoelectric response is closely associated with a temperature-driven tetragonal (T) – pseudocubic (PC) phase transition,
(Bi,Na,K)TiO3 (BNKT)基单晶作为pb基压电材料的无铅替代品,在高性能机电应用中引起了越来越多的关注。在这项工作中,我们报告了一种局部异质结构工程策略,以实现基于bnkt的单晶创纪录的高温压电性能。将MnO2引入助熔剂生长的(Bi0.48Na0.425K0.055Ba0.04)TiO3单晶(BNKBT-Mn)中,得到了明显的纳米级组成/结构非均质性。这种工程的局部无序极大地改变了极化动力学和畴结构:在室温下,改性晶体表现出较大的压电系数d33 = 513 pC/N,同时保持相对较高的退极化温度(Td) 148°C。在147°C时,最大压电系数达到1257 pC/N,同时具有1.24%的大单极电应变和1771 pm/V的极高反向压电系数(d33*(d33*))。进一步分析表明,巨大的高温压电响应与温度驱动的四方(T) -伪晶(PC)相变、局部异质结构的存在和畴态的演化密切相关。本研究表明,局部异质结构设计为同时提高室温性能和释放无铅bnkt基单晶优越的高温压电功能提供了有效途径。
{"title":"Record high-temperature piezoelectric performance in BNKT-based single crystals via local heterostructure design","authors":"Jialin Niu, Yongxing Wei, Yanghuan Deng, Changqing Jin, Changpeng Guan, Siyuan Dong, Zhonghua Dai, Zengzhe Xi, Zengyun Jian, Zhong Yang, Li Jin","doi":"10.1016/j.jmst.2026.02.002","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.02.002","url":null,"abstract":"As a promising lead-free alternative to Pb-based piezoelectric materials, (Bi,Na,K)TiO&lt;sub&gt;3&lt;/sub&gt; (BNKT)-based single crystals have attracted increasing interest for high-performance electromechanical applications. In this work, we report a local heterostructure engineering strategy to achieves record high temperature piezoelectric performance in BNKT-based single crystals. MnO&lt;sub&gt;2&lt;/sub&gt; was introduced into flux-grown (Bi&lt;sub&gt;0.48&lt;/sub&gt;Na&lt;sub&gt;0.425&lt;/sub&gt;K&lt;sub&gt;0.055&lt;/sub&gt;Ba&lt;sub&gt;0.04&lt;/sub&gt;)TiO&lt;sub&gt;3&lt;/sub&gt; single crystals (BNKBT–Mn), resulting in pronounced nanoscale compositional/structural heterogeneity. This engineered local disorder dramatically modifies polarization dynamics and domain configurations: at room temperature, the modified crystals exhibit a large piezoelectric coefficient &lt;em&gt;d&lt;/em&gt;&lt;sub&gt;33&lt;/sub&gt; = 513 pC/N while retaining a relatively high depolarization temperature (&lt;em&gt;T&lt;/em&gt;&lt;sub&gt;d&lt;/sub&gt;) of 148°C. A maximum piezoelectric coefficient of 1257 pC/N is achieved at 147°C, together with a large unipolar electrostrain of 1.24% and an exceptionally high converse piezoelectric coefficient &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;33&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;*&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -945.9 1786.8 1395\" width=\"4.15ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;use is=\"true\" xlink:href=\"#MJSZ1-28\"&gt;&lt;/use&gt;&lt;g is=\"true\" transform=\"translate(458,0)\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMATHI-64\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(524,320)\"&gt;&lt;use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(520,-307)\"&gt;&lt;g is=\"true\"&gt;&lt;use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-33\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;33&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;*&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;33&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;*&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;) of 1771 pm/V. Further analyses indicate that the giant high-temperature piezoelectric response is closely associated with a temperature-driven tetragonal (T) – pseudocubic (PC) phase transition, ","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"110 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel and efficient benzimidazole derivative corrosion inhibitor by pH-driven gated release from nanotubes for multifunctional protection of X65 steel in submarine oil and gas field pipelines 纳米管ph驱动门控释放新型高效苯并咪唑衍生物缓蚀剂对海底油气田管线X65钢的多功能保护
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-07 DOI: 10.1016/j.jmst.2026.01.048
Danyang Wang, Xiaole Xin, Quanqing Wu, Quanrun Wang, Yihui Wang, Shuai Yuan, Jizhou Duan, Huiwen Tian
{"title":"Novel and efficient benzimidazole derivative corrosion inhibitor by pH-driven gated release from nanotubes for multifunctional protection of X65 steel in submarine oil and gas field pipelines","authors":"Danyang Wang, Xiaole Xin, Quanqing Wu, Quanrun Wang, Yihui Wang, Shuai Yuan, Jizhou Duan, Huiwen Tian","doi":"10.1016/j.jmst.2026.01.048","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.048","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"77 1 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Damage evolution and fracture mechanisms of Al–Cu–Li alloy during elevated-temperature tensile deformation via in-situ synchrotron tomography 高温拉伸变形过程中Al-Cu-Li合金的损伤演化与断裂机制
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-07 DOI: 10.1016/j.jmst.2026.01.049
Fuyuan Liu, Zelong Du, Guantao Wang, Enyu Guo, Zongning Chen, Yanjin Xu, Zhirou Zhang, Huijun Kang, Tongmin Wang
Al–Cu–Li alloys are widely applied in aerospace and military owing to their high specific strength and stiffness. However, their mechanical behavior under elevated-temperature environments is degraded, with reduced strength and damage tolerance. This study investigates the microstructural evolution and damage mechanisms of Al–4.1Cu–1.3Li–0.4Mg–0.4Ag–0.5Zn–0.3Mn–0.1Zr alloy under elevated-temperature tensile loading. In-situ synchrotron tomography is performed during tensile tests at varying temperatures (100–200°C) to reveal the mechanical performance and damage mechanisms. As the tensile temperature increases, both the yield strength and ultimate tensile strength decrease from 694 and 739 MPa at 25°C to 501 and 521 MPa at 200°C, while elongation increases from 5.9% to 12.0%. The strength reduction is primarily attributed to the dissolution and coarsening of T1 precipitates, with the accelerated coarsening rate as the temperature rises. Concurrently, the geometrically necessary dislocation density decreases, and the precipitate-free zones widen, promoting strain localization and crack initiation at grain boundaries. In-situ synchrotron tomography reveals that voids predominantly nucleate near the T phase. At 100°C, brittle fracture initiates from the T phase, followed by the nucleation of voids at these regions, which grow slowly into elliptical shapes along the loading direction. As the temperature increases to 200°C, the interface strength between the T phase and matrix reduces, leading to debonding and a dominant void nucleation mechanism. Voids continue to grow and merge through plastic necking, ultimately resulting in intergranular ductile fracture.
铝铜锂合金具有高比强度和刚度,在航空航天和军事领域有着广泛的应用。然而,它们在高温环境下的力学性能下降,强度和损伤容限降低。研究了Al-4.1Cu-1.3Li-0.4Mg-0.4Ag-0.5Zn-0.3Mn-0.1Zr合金在高温拉伸载荷作用下的组织演变及损伤机理。在不同温度(100-200°C)的拉伸试验期间进行原位同步加速器断层扫描,以揭示机械性能和损伤机制。随着拉伸温度的升高,屈服强度和极限抗拉强度从25℃时的694和739 MPa降低到200℃时的501和521 MPa,伸长率从5.9%提高到12.0%。强度降低的主要原因是T1析出相的溶解和粗化,随着温度的升高,粗化速率加快。同时,几何必需位错密度减小,无析出区变宽,促进了晶界应变局部化和裂纹萌生。原位同步加速器层析成像显示,孔洞主要在T相附近成核。在100℃时,脆性断裂从T相开始,随后这些区域出现孔洞形核,沿加载方向缓慢成长为椭圆形。当温度升高到200℃时,T相与基体之间的界面强度降低,导致脱键,以空穴成核为主。空洞通过塑性颈缩继续增大并合并,最终导致晶间韧性断裂。
{"title":"Damage evolution and fracture mechanisms of Al–Cu–Li alloy during elevated-temperature tensile deformation via in-situ synchrotron tomography","authors":"Fuyuan Liu, Zelong Du, Guantao Wang, Enyu Guo, Zongning Chen, Yanjin Xu, Zhirou Zhang, Huijun Kang, Tongmin Wang","doi":"10.1016/j.jmst.2026.01.049","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.049","url":null,"abstract":"Al–Cu–Li alloys are widely applied in aerospace and military owing to their high specific strength and stiffness. However, their mechanical behavior under elevated-temperature environments is degraded, with reduced strength and damage tolerance. This study investigates the microstructural evolution and damage mechanisms of Al–4.1Cu–1.3Li–0.4Mg–0.4Ag–0.5Zn–0.3Mn–0.1Zr alloy under elevated-temperature tensile loading. <em>In-situ</em> synchrotron tomography is performed during tensile tests at varying temperatures (100–200°C) to reveal the mechanical performance and damage mechanisms. As the tensile temperature increases, both the yield strength and ultimate tensile strength decrease from 694 and 739 MPa at 25°C to 501 and 521 MPa at 200°C, while elongation increases from 5.9% to 12.0%. The strength reduction is primarily attributed to the dissolution and coarsening of T<sub>1</sub> precipitates, with the accelerated coarsening rate as the temperature rises. Concurrently, the geometrically necessary dislocation density decreases, and the precipitate-free zones widen, promoting strain localization and crack initiation at grain boundaries. <em>In-situ</em> synchrotron tomography reveals that voids predominantly nucleate near the T phase. At 100°C, brittle fracture initiates from the T phase, followed by the nucleation of voids at these regions, which grow slowly into elliptical shapes along the loading direction. As the temperature increases to 200°C, the interface strength between the T phase and matrix reduces, leading to debonding and a dominant void nucleation mechanism. Voids continue to grow and merge through plastic necking, ultimately resulting in intergranular ductile fracture.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"95 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoupled analysis reveals interfacial bridge effect on mechanical response and failure behavior in UHTC-modified C/C composites 解耦分析揭示了界面桥效应对uhtc改性C/C复合材料力学响应和破坏行为的影响
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1016/j.jmst.2026.01.043
Zhicong Yan, Yi Zhang, Shuo Zhang, Chenglong Tan, Menglin Zhang, Bing Liu, Dou Hu, Tianyu Liu, Qiangang Fu
{"title":"Decoupled analysis reveals interfacial bridge effect on mechanical response and failure behavior in UHTC-modified C/C composites","authors":"Zhicong Yan, Yi Zhang, Shuo Zhang, Chenglong Tan, Menglin Zhang, Bing Liu, Dou Hu, Tianyu Liu, Qiangang Fu","doi":"10.1016/j.jmst.2026.01.043","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.043","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"9 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold spraying-an effective shapable method for preparing high-performance Bi2Te3-based thermoelectrics 冷喷涂——制备高性能bi2te3基热电材料的有效成型方法
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1016/j.jmst.2026.02.001
Xing-Kai Duan, Qin-Xue Hu, Yue-Zhen Jiang, Zhan-Qi Cheng, Liang-Cao Yin, Qingfeng Liu, Li Sun, Dong-Wei Ao, Kong-Gang Hu, Jing Kuang, Deng-Liang Yi, Fu-Yi Yu, Raza Moshwan, M. Shahabuddin, Wei-Di Liu
With the advantages of material-saving shapable production and facile geometry design, shapable methods provide a broad prospect for the future thermoelectric material production. Herein, cold spraying followed by annealing (CSA) induces enriched defects in the bulk material, which can lead to excellent thermoelectric performance and hardness. Compared with the HP process, CSA contributes to more pores and intrinsic defects. The enriched intrinsic defects contribute to moderate electrical performance. Simultaneously, these defects strongly scatter phonons, leading to ultra-low total thermal conductivity values of ∼0.64 W m−1 K−1 for both p-type CSA Bi0.5Sb1.5Te3 and n-type CSA Bi2Te2.7Se0.3 bulks at room temperature. Correspondingly, CSA bulks possess excellent room-temperature zT of ∼1.1 (p-type Bi0.5Sb1.5Te3) and ∼0.9 (n-type Bi2Te2.7Se0.3), respectively, which are comparable to those prepared by HP and other shapable methods. Furthermore, a four-leg thermoelectric device is assembled based on as-prepared p-type CSA Bi0.5Sb1.5Te3 and n-type CSA Bi2Te2.7Se0.3 bulks, achieving a rational energy conversion efficiency of ∼4% under a small temperature difference of 100 K. This study demonstrates CSA method is promising for future shapable production of high-performance thermoelectric materials.
成型方法具有材料节约、几何设计方便等优点,为未来热电材料生产提供了广阔的前景。其中,冷喷涂后退火(CSA)使块体材料中缺陷富集,从而获得优异的热电性能和硬度。与HP工艺相比,CSA工艺产生了更多的孔隙和内在缺陷。丰富的本征缺陷导致了中等的电气性能。同时,这些缺陷强烈散射声子,导致p型CSA Bi0.5Sb1.5Te3和n型CSA Bi2Te2.7Se0.3块体在室温下的总导热系数为~ 0.64 W m−1 K−1。相应地,CSA块体具有优异的室温zT,分别为~ 1.1 (p型Bi0.5Sb1.5Te3)和~ 0.9 (n型Bi2Te2.7Se0.3),与HP和其他成型方法制备的材料相当。此外,基于制备的p型CSA Bi0.5Sb1.5Te3和n型CSA Bi2Te2.7Se0.3块组装了四腿热电器件,在100 K的小温差下实现了约4%的合理能量转换效率。该研究表明,CSA方法在高性能热电材料的未来可成型生产中是有希望的。
{"title":"Cold spraying-an effective shapable method for preparing high-performance Bi2Te3-based thermoelectrics","authors":"Xing-Kai Duan, Qin-Xue Hu, Yue-Zhen Jiang, Zhan-Qi Cheng, Liang-Cao Yin, Qingfeng Liu, Li Sun, Dong-Wei Ao, Kong-Gang Hu, Jing Kuang, Deng-Liang Yi, Fu-Yi Yu, Raza Moshwan, M. Shahabuddin, Wei-Di Liu","doi":"10.1016/j.jmst.2026.02.001","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.02.001","url":null,"abstract":"With the advantages of material-saving shapable production and facile geometry design, shapable methods provide a broad prospect for the future thermoelectric material production. Herein, cold spraying followed by annealing (CSA) induces enriched defects in the bulk material, which can lead to excellent thermoelectric performance and hardness. Compared with the HP process, CSA contributes to more pores and intrinsic defects. The enriched intrinsic defects contribute to moderate electrical performance. Simultaneously, these defects strongly scatter phonons, leading to ultra-low total thermal conductivity values of ∼0.64 W m<sup>−1</sup> K<sup>−1</sup> for both p-type CSA Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and n-type CSA Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> bulks at room temperature. Correspondingly, CSA bulks possess excellent room-temperature <em>zT</em> of ∼1.1 (p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>) and ∼0.9 (n-type Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub>), respectively, which are comparable to those prepared by HP and other shapable methods. Furthermore, a four-leg thermoelectric device is assembled based on as-prepared p-type CSA Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and n-type CSA Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> bulks, achieving a rational energy conversion efficiency of ∼4% under a small temperature difference of 100 K. This study demonstrates CSA method is promising for future shapable production of high-performance thermoelectric materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From content to distribution: Achieving high-strength Ni-based composites via Si-induced homogeneous carbide dispersion 从含量到分布:通过硅致均相碳化物分散实现高强度镍基复合材料
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1016/j.jmst.2026.01.042
Xuetong Zeng, Shasha Yang, Chen Tang, Minghui Chen, Fuhui Wang
The conventional strategy of strengthening nickel-based composites by maximizing carbide content faces a fundamental limitation, where excessive carbides inevitably agglomerate and coarsen, leading to diminishing strengthening returns and a severe loss of ductility. This study establishes a homogeneous carbide dispersion, not nominal content, as the determinant of superior mechanical properties. To realize this, we introduce Si as a self-consuming microstructural modulator during spark plasma sintering of a Ni20Cr-based composite. The semiconducting nature of Si markedly intensifies localized Joule heating at particle interfaces, inducing transient melting of the Ni matrix. This melting, in turn, intensifies thermal gradients and Marangoni convection, thereby facilitating the inward transport and homogenization of in situ formed nano-TiC dispersions. Remarkably, Si completely dissolves into the matrix post-sintering, avoiding the formation of brittle phases and thereby preserving ductility. The optimized composite, with only 4 wt% Ti3SiC2 and 3 wt% Si, achieves an exceptional yield strength of 1273 MPa, an ultimate tensile strength of 1558 MPa, and maintains good elongation. This work thus establishes a new paradigm wherein microstructural homogeneity, rather than nominal content, governs the strengthening potential of carbide-reinforced composites.
通过最大化碳化物含量来增强镍基复合材料的传统策略面临着一个根本性的限制,即过量的碳化物不可避免地聚集和变粗,导致强化回报降低和延性严重丧失。本研究建立了均匀的碳化物分散体,而不是标称含量,作为优越的机械性能的决定因素。为了实现这一点,我们在ni20cr基复合材料的火花等离子烧结过程中引入了Si作为自消耗的微结构调制器。硅的半导体性质显著增强了颗粒界面的局部焦耳加热,诱发了Ni基体的瞬态熔化。这种熔融反过来又加剧了热梯度和马兰戈尼对流,从而促进了原位形成的纳米tic弥散体的向内输送和均匀化。值得注意的是,Si在烧结后完全溶解在基体中,避免了脆性相的形成,从而保持了延展性。优化后的复合材料,仅含4wt % Ti3SiC2和3wt % Si,获得了1273 MPa的屈服强度和1558 MPa的极限拉伸强度,并保持了良好的伸长率。因此,这项工作建立了一个新的范式,其中微观结构的同质性,而不是标称含量,控制碳化物增强复合材料的强化潜力。
{"title":"From content to distribution: Achieving high-strength Ni-based composites via Si-induced homogeneous carbide dispersion","authors":"Xuetong Zeng, Shasha Yang, Chen Tang, Minghui Chen, Fuhui Wang","doi":"10.1016/j.jmst.2026.01.042","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.042","url":null,"abstract":"The conventional strategy of strengthening nickel-based composites by maximizing carbide content faces a fundamental limitation, where excessive carbides inevitably agglomerate and coarsen, leading to diminishing strengthening returns and a severe loss of ductility. This study establishes a homogeneous carbide dispersion, not nominal content, as the determinant of superior mechanical properties. To realize this, we introduce Si as a self-consuming microstructural modulator during spark plasma sintering of a Ni20Cr-based composite. The semiconducting nature of Si markedly intensifies localized Joule heating at particle interfaces, inducing transient melting of the Ni matrix. This melting, in turn, intensifies thermal gradients and Marangoni convection, thereby facilitating the inward transport and homogenization of <em>in situ</em> formed nano-TiC dispersions. Remarkably, Si completely dissolves into the matrix post-sintering, avoiding the formation of brittle phases and thereby preserving ductility. The optimized composite, with only 4 wt% Ti<sub>3</sub>SiC<sub>2</sub> and 3 wt% Si, achieves an exceptional yield strength of 1273 MPa, an ultimate tensile strength of 1558 MPa, and maintains good elongation. This work thus establishes a new paradigm wherein microstructural homogeneity, rather than nominal content, governs the strengthening potential of carbide-reinforced composites.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"293 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bismaleimide-triazine composites with superior prepolymer processability and integrated performance enabled by catalytic ZIF-8@SiO2 nanofillers 催化ZIF-8@SiO2纳米填料使双马来酰亚胺-三嗪复合材料具有优异的预聚可加工性和综合性能
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1016/j.jmst.2026.01.047
Yuze Jiao, Huiqi Jiangjia, Shaolong Zhang, Zhaoyue Xia, Zeyuan Li, Zijian Hong, Haoyu Zheng, Hui Yang, Qilong Zhang
{"title":"Bismaleimide-triazine composites with superior prepolymer processability and integrated performance enabled by catalytic ZIF-8@SiO2 nanofillers","authors":"Yuze Jiao, Huiqi Jiangjia, Shaolong Zhang, Zhaoyue Xia, Zeyuan Li, Zijian Hong, Haoyu Zheng, Hui Yang, Qilong Zhang","doi":"10.1016/j.jmst.2026.01.047","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.047","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice distortion induces non-equilibrium phase formation to achieve low-temperature high-strength joining of Mg-Zn alloys 晶格畸变导致非平衡相的形成,实现了镁锌合金的低温高强度连接
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1016/j.jmst.2026.01.045
Rui-nan Chen, Kun-kun Deng, Cui-ju Wang, Kai-bo Nie, Quan-xin Shi, Yi-jia Li
This work reports a novel strategy for low-temperature, high-strength joining of Mg-Zn alloys based on a combination of rolled composite and diffusion reaction. A Mg/Zn filler preform was fabricated via rolling, wherein a non-equilibrium Mg7Zn3 phase with low melting point was in situ self-generated by lattice distortion induction and dislocation tube effect. The localized melting of the Mg7Zn3 phase triggers an overall gradient melting to achieve low-temperature, high-strength joining of Mg-Zn alloys. The exceptional strength originates from the alternating distribution structure of soft α'-Mg and hard Mg7Zn3 (MgZn2) phases. The method provides a new filler design strategy and theoretical insights for low-temperature high-strength joining of Mg alloys.
本文报道了一种基于轧制复合材料和扩散反应相结合的低温、高强度Mg-Zn合金连接新策略。采用轧制法制备了一种Mg/Zn填充预制体,通过晶格畸变诱导和位错管效应,原位生成了低熔点的非平衡Mg7Zn3相。Mg7Zn3相的局部熔化触发整体梯度熔化,实现Mg-Zn合金的低温、高强度连接。优异的强度源于软相α′-Mg和硬相Mg7Zn3 (MgZn2)的交替分布结构。该方法为镁合金低温高强度连接提供了一种新的填料设计策略和理论见解。
{"title":"Lattice distortion induces non-equilibrium phase formation to achieve low-temperature high-strength joining of Mg-Zn alloys","authors":"Rui-nan Chen, Kun-kun Deng, Cui-ju Wang, Kai-bo Nie, Quan-xin Shi, Yi-jia Li","doi":"10.1016/j.jmst.2026.01.045","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.045","url":null,"abstract":"This work reports a novel strategy for low-temperature, high-strength joining of Mg-Zn alloys based on a combination of rolled composite and diffusion reaction. A Mg/Zn filler preform was fabricated via rolling, wherein a non-equilibrium Mg<sub>7</sub>Zn<sub>3</sub> phase with low melting point was in situ self-generated by lattice distortion induction and dislocation tube effect. The localized melting of the Mg<sub>7</sub>Zn<sub>3</sub> phase triggers an overall gradient melting to achieve low-temperature, high-strength joining of Mg-Zn alloys. The exceptional strength originates from the alternating distribution structure of soft α'-Mg and hard Mg<sub>7</sub>Zn<sub>3</sub> (MgZn<sub>2</sub>) phases. The method provides a new filler design strategy and theoretical insights for low-temperature high-strength joining of Mg alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"24 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic insights into corrosion-induced mechanical degradation of 2524-T3 aluminum alloy: Environmentally induced variable ductility reversibility 腐蚀诱发2524-T3铝合金力学退化的机理研究:环境诱导的可变延展性可逆性
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1016/j.jmst.2025.12.062
Mingtao Wang, Qingshuai Zhang, Zhongyu Cui, Bo Zhang, Liwei Wang, Hao Wu, Huiyun Tian, Hongzhi Cui
The corrosion behavior and corrosion-induced mechanical degradation of 2524-T3 aluminum alloy in pure chloride and HSO3-containing environments are investigated in the present work. The controlling factors and underlying mechanisms of the mechanical property degradation and the associated reversibility are discussed. In a pure chloride environment, the ductility loss is fully reversible, which is influenced by the corrosion product layer, the nature and depth of subsurface attack propagation, and the corrosion-induced hydrogen behavior. However, in the HSO3⁻-containing environment, the ductility loss is predominantly irreversible, with a recovery rate of 14.6% after 48 h and only 3.4% after 72 h. This is attributed to changes in the initial pH, buffer effect, and the corrosion patterns, with the buffer effect accounting for 72% of the contribution to the irreversibility. The results provide insights to predict the reversibility of the mechanical property degradation in aluminum alloys, thereby addressing the challenges posed by corrosion in diverse environments for ensuring safe use and widespread application.
研究了2524-T3铝合金在纯氯化物和含HSO3−环境中的腐蚀行为和腐蚀诱发的机械降解。讨论了力学性能退化的控制因素、机理及其可逆性。在纯氯化物环境下,塑性损失是完全可逆的,受腐蚀产物层、亚表面腐蚀扩展的性质和深度以及腐蚀诱导的氢行为的影响。然而,在含HSO3毒化环境中,延性损失主要是不可逆的,48 h后的恢复率为14.6%,72 h后的恢复率仅为3.4%。这归因于初始pH、缓冲作用和腐蚀模式的变化,缓冲作用占不可逆性贡献的72%。研究结果为预测铝合金力学性能退化的可逆性提供了见解,从而解决了各种环境中腐蚀带来的挑战,以确保安全使用和广泛应用。
{"title":"Mechanistic insights into corrosion-induced mechanical degradation of 2524-T3 aluminum alloy: Environmentally induced variable ductility reversibility","authors":"Mingtao Wang, Qingshuai Zhang, Zhongyu Cui, Bo Zhang, Liwei Wang, Hao Wu, Huiyun Tian, Hongzhi Cui","doi":"10.1016/j.jmst.2025.12.062","DOIUrl":"https://doi.org/10.1016/j.jmst.2025.12.062","url":null,"abstract":"The corrosion behavior and corrosion-induced mechanical degradation of 2524-T3 aluminum alloy in pure chloride and HSO<sub>3</sub><sup>−</sup>-containing environments are investigated in the present work. The controlling factors and underlying mechanisms of the mechanical property degradation and the associated reversibility are discussed. In a pure chloride environment, the ductility loss is fully reversible, which is influenced by the corrosion product layer, the nature and depth of subsurface attack propagation, and the corrosion-induced hydrogen behavior. However, in the HSO<sub>3</sub>⁻-containing environment, the ductility loss is predominantly irreversible, with a recovery rate of 14.6% after 48 h and only 3.4% after 72 h. This is attributed to changes in the initial pH, buffer effect, and the corrosion patterns, with the buffer effect accounting for 72% of the contribution to the irreversibility. The results provide insights to predict the reversibility of the mechanical property degradation in aluminum alloys, thereby addressing the challenges posed by corrosion in diverse environments for ensuring safe use and widespread application.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"28 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Materials Science & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1