CsPbI3 perovskite solar module with certified aperture area efficiency >18% based on ambient-moisture-assisted surface hydrolysis

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-10-16 DOI:10.1016/j.joule.2024.06.026
Xiaomin Liu , Jiahao Zhang , Haifei Wang , Yanfeng Miao , Ting Guo , Luis K. Ono , Shuai Yuan , Yao Wang , Penghui Ji , Haoran Chen , Congyang Zhang , Tongtong Li , Chenfeng Ding , Silvia Mariotti , Xiaomin Huo , Ilhem-Nadia Rabehi , Hengyuan Wang , Yixin Zhao , Yabing Qi
{"title":"CsPbI3 perovskite solar module with certified aperture area efficiency >18% based on ambient-moisture-assisted surface hydrolysis","authors":"Xiaomin Liu ,&nbsp;Jiahao Zhang ,&nbsp;Haifei Wang ,&nbsp;Yanfeng Miao ,&nbsp;Ting Guo ,&nbsp;Luis K. Ono ,&nbsp;Shuai Yuan ,&nbsp;Yao Wang ,&nbsp;Penghui Ji ,&nbsp;Haoran Chen ,&nbsp;Congyang Zhang ,&nbsp;Tongtong Li ,&nbsp;Chenfeng Ding ,&nbsp;Silvia Mariotti ,&nbsp;Xiaomin Huo ,&nbsp;Ilhem-Nadia Rabehi ,&nbsp;Hengyuan Wang ,&nbsp;Yixin Zhao ,&nbsp;Yabing Qi","doi":"10.1016/j.joule.2024.06.026","DOIUrl":null,"url":null,"abstract":"<div><div>Humidity can accelerate degradation by promoting phase transitions and enhancing the defect generation in perovskites. This poses a significant challenge for the upscaling of perovskite solar modules under ambient conditions, especially for moisture-sensitive inorganic CsPbI<sub>3</sub> perovskite. Herein, we report an environmental moisture-induced chemical passivation of the CsPbI<sub>3</sub> perovskite surface by the hydrolysis of perfluorobutanesulfonyl chloride (PFSC). The <em>in situ</em> generated perfluorobutanesulfonic acid (PFS) effectively reduces defect density and improves the interfacial contact, leading to CsPbI<sub>3</sub>-based devices with suppressed non-radiative recombination losses. Our <em>in situ</em> surface-modified PFS-CsPbI<sub>3</sub> perovskite solar modules with an aperture area of 12.82 cm<sup>2</sup> deliver a state-of-the-art certified aperture area efficiency of 18.22%.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 10","pages":"Pages 2851-2862"},"PeriodicalIF":35.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003027","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Humidity can accelerate degradation by promoting phase transitions and enhancing the defect generation in perovskites. This poses a significant challenge for the upscaling of perovskite solar modules under ambient conditions, especially for moisture-sensitive inorganic CsPbI3 perovskite. Herein, we report an environmental moisture-induced chemical passivation of the CsPbI3 perovskite surface by the hydrolysis of perfluorobutanesulfonyl chloride (PFSC). The in situ generated perfluorobutanesulfonic acid (PFS) effectively reduces defect density and improves the interfacial contact, leading to CsPbI3-based devices with suppressed non-radiative recombination losses. Our in situ surface-modified PFS-CsPbI3 perovskite solar modules with an aperture area of 12.82 cm2 deliver a state-of-the-art certified aperture area efficiency of 18.22%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环境湿度辅助表面水解的掺锑三氧化锡(CsPbI3)过氧化物太阳能模块,经认证的开孔面积效率大于 18
湿度会促进过氧化物晶相转变并增加缺陷的产生,从而加速降解。这给我们带来了巨大的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Toward water- and energy-sustainable lithium extraction from brines A critical outlook for large-scale all-solid-state batteries Ethylene carbonate-free electrolytes toward better lithium-ion batteries Seeing the unseen: Real-time tracking of battery cycling-to-failure via surface strain Global land and solar energy relationships for sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1