Jae In Kim, Jaeyoun Choi, Junhyung Kim, Junkyung Song, Jaebum Park, Yong-Lae Park
{"title":"Bilateral Back Extensor Exosuit for multidimensional assistance and prevention of spinal injuries","authors":"Jae In Kim, Jaeyoun Choi, Junhyung Kim, Junkyung Song, Jaebum Park, Yong-Lae Park","doi":"10.1126/scirobotics.adk6717","DOIUrl":null,"url":null,"abstract":"<div >Lumbar spine injuries resulting from heavy or repetitive lifting remain a prevalent concern in workplaces. Back-support devices have been developed to mitigate these injuries by aiding workers during lifting tasks. However, existing devices often fall short in providing multidimensional force assistance for asymmetric lifting, an essential feature for practical workplace use. In addition, validation of device safety across the entire human spine has been lacking. This paper introduces the Bilateral Back Extensor Exosuit (BBEX), a robotic back-support device designed to address both functionality and safety concerns. The design of the BBEX draws inspiration from the anatomical characteristics of the human spine and back extensor muscles. Using a multi–degree-of-freedom architecture and serially connected linear actuators, the device’s components are strategically arranged to closely mimic the biomechanics of the human spine and back extensor muscles. To establish the efficacy and safety of the BBEX, a series of experiments with human participants was conducted. Eleven healthy male participants engaged in symmetric and asymmetric lifting tasks while wearing the BBEX. The results confirm the ability of the BBEX to provide effective multidimensional force assistance. Moreover, comprehensive safety validation was achieved through analyses of muscle fatigue in the upper and the lower erector spinae muscles, as well as mechanical loading on spinal joints during both lifting scenarios. By seamlessly integrating functionality inspired by human biomechanics with a focus on safety, this study offers a promising solution to address the persistent challenge of preventing lumbar spine injuries in demanding work environments.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adk6717","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lumbar spine injuries resulting from heavy or repetitive lifting remain a prevalent concern in workplaces. Back-support devices have been developed to mitigate these injuries by aiding workers during lifting tasks. However, existing devices often fall short in providing multidimensional force assistance for asymmetric lifting, an essential feature for practical workplace use. In addition, validation of device safety across the entire human spine has been lacking. This paper introduces the Bilateral Back Extensor Exosuit (BBEX), a robotic back-support device designed to address both functionality and safety concerns. The design of the BBEX draws inspiration from the anatomical characteristics of the human spine and back extensor muscles. Using a multi–degree-of-freedom architecture and serially connected linear actuators, the device’s components are strategically arranged to closely mimic the biomechanics of the human spine and back extensor muscles. To establish the efficacy and safety of the BBEX, a series of experiments with human participants was conducted. Eleven healthy male participants engaged in symmetric and asymmetric lifting tasks while wearing the BBEX. The results confirm the ability of the BBEX to provide effective multidimensional force assistance. Moreover, comprehensive safety validation was achieved through analyses of muscle fatigue in the upper and the lower erector spinae muscles, as well as mechanical loading on spinal joints during both lifting scenarios. By seamlessly integrating functionality inspired by human biomechanics with a focus on safety, this study offers a promising solution to address the persistent challenge of preventing lumbar spine injuries in demanding work environments.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.