Aiden Hendrickx, Yves Hatangi, Olivier Honnay, Steven B Janssens, Piet Stoffelen, Filip Vandelook, Jonas Depecker
{"title":"Leaf functional trait evolution and its putative climatic drivers in African Coffea species.","authors":"Aiden Hendrickx, Yves Hatangi, Olivier Honnay, Steven B Janssens, Piet Stoffelen, Filip Vandelook, Jonas Depecker","doi":"10.1093/aob/mcae111","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Leaf traits are known to be strong predictors of plant performance and can be expected to (co)vary along environmental gradients. We investigated the variation, integration, environmental relationships and evolutionary history of leaf functional traits in the genus Coffea, typically a rainforest understorey shrub, across Africa. A better understanding of the adaptive processes involved in leaf trait evolution can inform the use and conservation of coffee genetic resources in a changing climate.</p><p><strong>Methods: </strong>We used phylogenetic comparative methods to investigate the evolution of six leaf traits measured from herbarium specimens of 58 African Coffea species. We added environmental data and data on maximum plant height for each species to test trait-environment correlations in various (sub)clades, and we compared continuous trait evolution models to identify variables driving trait diversification.</p><p><strong>Key results: </strong>Substantial leaf trait variation was detected across the genus Coffea in Africa, which was mostly interspecific. Of these traits, stomatal size and stomatal density exhibited a clear trade-off. We observed low densities of large stomata in early-branching lineages and higher densities of smaller stomata in more recent taxa, which we hypothesize to be related to declining CO2 levels since the mid-Miocene. Brownian motion evolution was rejected in favor of white noise or Ornstein-Uhlenbeck models for all traits, implying these traits are adaptively significant rather than driven by pure drift. The evolution of leaf area was likely driven by precipitation, with smaller leaves in drier climates across the genus.</p><p><strong>Conclusions: </strong>Generally, Coffea leaf traits appear to be evolutionarily labile and governed by stabilizing selection, though evolutionary patterns and correlations differ depending on the traits and clades considered. Our study highlights the importance of a phylogenetic perspective when studying trait relationships across related taxa, as well as the consideration of various taxonomic ranges.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"683-698"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae111","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Leaf traits are known to be strong predictors of plant performance and can be expected to (co)vary along environmental gradients. We investigated the variation, integration, environmental relationships and evolutionary history of leaf functional traits in the genus Coffea, typically a rainforest understorey shrub, across Africa. A better understanding of the adaptive processes involved in leaf trait evolution can inform the use and conservation of coffee genetic resources in a changing climate.
Methods: We used phylogenetic comparative methods to investigate the evolution of six leaf traits measured from herbarium specimens of 58 African Coffea species. We added environmental data and data on maximum plant height for each species to test trait-environment correlations in various (sub)clades, and we compared continuous trait evolution models to identify variables driving trait diversification.
Key results: Substantial leaf trait variation was detected across the genus Coffea in Africa, which was mostly interspecific. Of these traits, stomatal size and stomatal density exhibited a clear trade-off. We observed low densities of large stomata in early-branching lineages and higher densities of smaller stomata in more recent taxa, which we hypothesize to be related to declining CO2 levels since the mid-Miocene. Brownian motion evolution was rejected in favor of white noise or Ornstein-Uhlenbeck models for all traits, implying these traits are adaptively significant rather than driven by pure drift. The evolution of leaf area was likely driven by precipitation, with smaller leaves in drier climates across the genus.
Conclusions: Generally, Coffea leaf traits appear to be evolutionarily labile and governed by stabilizing selection, though evolutionary patterns and correlations differ depending on the traits and clades considered. Our study highlights the importance of a phylogenetic perspective when studying trait relationships across related taxa, as well as the consideration of various taxonomic ranges.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.