Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids.

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED Annual review of chemical and biomolecular engineering Pub Date : 2024-07-01 DOI:10.1146/annurev-chembioeng-100522-110306
Gerald Linke
{"title":"Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids.","authors":"Gerald Linke","doi":"10.1146/annurev-chembioeng-100522-110306","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen is similar to natural gas in terms of its physical and chemical properties but does not release carbon dioxide when burnt. This makes hydrogen an energy carrier of great importance in climate policy, especially as an enabler of increasing integration of volatile renewable energy, progressive electrification, and effective emission reductions in the hard-to-decarbonize sectors. Leaving aside the problems of transporting hydrogen as a liquid, technological challenges along the entire supply chain can be considered as solved in principle, as shown in the experimental findings of the Hydrogen Innovation Program of the German Technical and Scientific Association for Gas and Water. By scaling up production and end-use capacities and, most importantly, producing hydrogen in regions with abundant renewable energy, hydrogen and its applications can displace natural gas at affordable prices in the medium term. However, this substitution will take place at different rates in different regions and with different levels of added value, all of which must be understood for hydrogen uptake to be successful.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"15 1","pages":"63-80"},"PeriodicalIF":7.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-100522-110306","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen is similar to natural gas in terms of its physical and chemical properties but does not release carbon dioxide when burnt. This makes hydrogen an energy carrier of great importance in climate policy, especially as an enabler of increasing integration of volatile renewable energy, progressive electrification, and effective emission reductions in the hard-to-decarbonize sectors. Leaving aside the problems of transporting hydrogen as a liquid, technological challenges along the entire supply chain can be considered as solved in principle, as shown in the experimental findings of the Hydrogen Innovation Program of the German Technical and Scientific Association for Gas and Water. By scaling up production and end-use capacities and, most importantly, producing hydrogen in regions with abundant renewable energy, hydrogen and its applications can displace natural gas at affordable prices in the medium term. However, this substitution will take place at different rates in different regions and with different levels of added value, all of which must be understood for hydrogen uptake to be successful.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢气会成为新的天然气吗?天然气电网中的氢整合。
氢气的物理和化学性质与天然气相似,但燃烧时不会释放二氧化碳。这使得氢气成为气候政策中非常重要的能源载体,尤其是作为增加不稳定可再生能源的整合、逐步电气化以及在难以去碳化的部门有效减排的推动力。撇开氢作为液体运输的问题不谈,正如德国天然气与水技术和科学协会氢创新计划的实验结果所示,整个供应链上的技术挑战原则上都可以被视为已经解决。通过提高生产和终端使用能力,最重要的是在可再生能源丰富的地区生产氢气,氢气及其应用可以在中期内以可承受的价格取代天然气。然而,在不同地区,这种替代将以不同的速度进行,并具有不同程度的附加值,要想成功吸收氢气,就必须了解所有这些因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
期刊最新文献
Microfluidic and Computational Tools for Neurodegeneration Studies. On-Demand Polymer Materials for Sustainability and Space. Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. Models for Decarbonization in the Chemical Industry. Introduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1