Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing.

IF 4 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY Annals of Laboratory Medicine Pub Date : 2024-07-26 DOI:10.3343/alm.2024.0089
Marco Lincango, Verónica Andreoli, Hernán García Rivello, Andrea Bender, Ana I Catalán, Marilina Rahhal, Rocío Delamer, Mariana Asinari, Adrián Mosquera Orgueira, María Belén Castro, María José Mela Osorio, Alicia Navickas, Sofia Grille, Evangelina Agriello, Jorge Arbelbide, Ana Lisa Basquiera, Carolina B Belli
{"title":"Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing.","authors":"Marco Lincango, Verónica Andreoli, Hernán García Rivello, Andrea Bender, Ana I Catalán, Marilina Rahhal, Rocío Delamer, Mariana Asinari, Adrián Mosquera Orgueira, María Belén Castro, María José Mela Osorio, Alicia Navickas, Sofia Grille, Evangelina Agriello, Jorge Arbelbide, Ana Lisa Basquiera, Carolina B Belli","doi":"10.3343/alm.2024.0089","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Molecular International Prognostic Scoring System (IPSS-M) has improved the prediction of clinical outcomes for myelodysplastic syndromes (MDS). The Artificial Intelligence Prognostic Scoring System for MDS (AIPSS-MDS), based on classical clinical parameters, has outperformed the IPSS, revised version (IPSS-R). For the first time, we validated the IPSS-M and other molecular prognostic models and compared them with the established IPSS-R and AIPSS-MDS models using data from South American patients.</p><p><strong>Methods: </strong>Molecular and clinical data from 145 patients with MDS and 37 patients with MDS/myeloproliferative neoplasms were retrospectively analyzed.</p><p><strong>Results: </strong>Prognostic power evaluation revealed that the IPSS-M (Harrell's concordance [C]-index: 0.75, area under the receiver operating characteristic curve [AUC]: 0.68) predicted overall survival better than the European MDS (EuroMDS; C-index: 0.72, AUC: 0.68) and Munich Leukemia Laboratory (MLL) (C-index: 0.70, AUC: 0.64) models. The IPSS-M prognostic discrimination was similar to that of the AIPSS-MDS model (C-index: 0.74, AUC: 0.66) and outperformed the IPSS-R model (C-index: 0.70, AUC: 0.61). Considering simplified low- and high-risk groups for clinical management, after restratifying from IPSS-R (57% and 32%, respectively, hazard ratio [HR]: 2.8; <i>P</i>=0.002) to IPSS-M, 12.6% of patients were upstaged, and 5% were downstaged (HR: 2.9; <i>P</i>=0.001). The AIPSS-MDS recategorized 51% of the low-risk cohort as high-risk, with no patients being downstaged (HR: 5.6; <i>P</i><0.001), consistent with most patients requiring disease-modifying therapy.</p><p><strong>Conclusions: </strong>The IPSS-M and AIPSS-MDS models provide more accurate survival prognoses than the IPSS-R, EuroMDS, and MLL models. The AIPSS-MDS model is a valid option for assessing risks for all patients with MDS, especially in resource-limited centers where molecular testing is not currently a standard clinical practice.</p>","PeriodicalId":8421,"journal":{"name":"Annals of Laboratory Medicine","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Laboratory Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3343/alm.2024.0089","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The Molecular International Prognostic Scoring System (IPSS-M) has improved the prediction of clinical outcomes for myelodysplastic syndromes (MDS). The Artificial Intelligence Prognostic Scoring System for MDS (AIPSS-MDS), based on classical clinical parameters, has outperformed the IPSS, revised version (IPSS-R). For the first time, we validated the IPSS-M and other molecular prognostic models and compared them with the established IPSS-R and AIPSS-MDS models using data from South American patients.

Methods: Molecular and clinical data from 145 patients with MDS and 37 patients with MDS/myeloproliferative neoplasms were retrospectively analyzed.

Results: Prognostic power evaluation revealed that the IPSS-M (Harrell's concordance [C]-index: 0.75, area under the receiver operating characteristic curve [AUC]: 0.68) predicted overall survival better than the European MDS (EuroMDS; C-index: 0.72, AUC: 0.68) and Munich Leukemia Laboratory (MLL) (C-index: 0.70, AUC: 0.64) models. The IPSS-M prognostic discrimination was similar to that of the AIPSS-MDS model (C-index: 0.74, AUC: 0.66) and outperformed the IPSS-R model (C-index: 0.70, AUC: 0.61). Considering simplified low- and high-risk groups for clinical management, after restratifying from IPSS-R (57% and 32%, respectively, hazard ratio [HR]: 2.8; P=0.002) to IPSS-M, 12.6% of patients were upstaged, and 5% were downstaged (HR: 2.9; P=0.001). The AIPSS-MDS recategorized 51% of the low-risk cohort as high-risk, with no patients being downstaged (HR: 5.6; P<0.001), consistent with most patients requiring disease-modifying therapy.

Conclusions: The IPSS-M and AIPSS-MDS models provide more accurate survival prognoses than the IPSS-R, EuroMDS, and MLL models. The AIPSS-MDS model is a valid option for assessing risks for all patients with MDS, especially in resource-limited centers where molecular testing is not currently a standard clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估下一代测序时代骨髓增生异常综合征非分子预后系统的相关性。
背景:分子国际预后评分系统(IPSS-M分子国际预后评分系统(IPSS-M)改善了骨髓增生异常综合征(MDS)临床预后的预测。基于经典临床参数的 MDS 人工智能预后评分系统(AIPSS-MDS)的表现优于 IPSS 修订版(IPSS-R)。我们首次利用南美患者的数据验证了 IPSS-M 和其他分子预后模型,并将其与已建立的 IPSS-R 和 AIPSS-MDS 模型进行了比较:回顾性分析了145例MDS患者和37例MDS/骨髓增殖性肿瘤患者的分子和临床数据:结果:预后能力评估显示,IPSS-M(Harrell's concordance [C]-index:0.75,接收者操作特征曲线下面积[AUC]:0.68)比欧洲 MDS(EuroMDS;C-指数:0.72,AUC:0.68)和慕尼黑白血病实验室(MLL)(C-指数:0.70,AUC:0.64)模型更能预测总生存期。IPSS-M预后判别能力与AIPSS-MDS模型相似(C-index:0.74,AUC:0.66),优于IPSS-R模型(C-index:0.70,AUC:0.61)。考虑到简化的临床管理低风险组和高风险组,从 IPSS-R 模型(分别为 57% 和 32%,危险比 [HR]:2.8;P=0.002)调整为 IPSS-M 模型后,12.6% 的患者被上调分期,5% 的患者被下调分期(HR:2.9;P=0.001)。AIPSS-MDS 将 51% 的低危患者重新归类为高危,没有患者被降级(HR:5.6;P=0.001):与 IPSS-R、EuroMDS 和 MLL 模型相比,IPSS-M 和 AIPSS-MDS 模型能提供更准确的生存预后。AIPSS-MDS 模型是评估所有 MDS 患者风险的有效选择,尤其是在资源有限的中心,因为目前分子检测还不是标准的临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Laboratory Medicine
Annals of Laboratory Medicine MEDICAL LABORATORY TECHNOLOGY-
CiteScore
8.30
自引率
12.20%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Annals of Laboratory Medicine is the official journal of Korean Society for Laboratory Medicine. The journal title has been recently changed from the Korean Journal of Laboratory Medicine (ISSN, 1598-6535) from the January issue of 2012. The JCR 2017 Impact factor of Ann Lab Med was 1.916.
期刊最新文献
Ability of the Capillary Electrophoresis-based HbA1c Assay to Detect Rare Hemoglobin Variants. Performance Evaluation of the LabGenius C-CT/NG-BMX Assay for Chlamydia trachomatis and Neisseria gonorrhoeae Detection. The First Korean Case of MAN1B1-Congenital Disorder of Glycosylation Diagnosed Using Whole-exome Sequencing and Matrix-assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry. Endogenous Thrombin Potential Level Helps Predict High Blood Loss in Patients Undergoing Cardiac Surgery. TP53 Mutation Status in Myelodysplastic Neoplasm and Acute Myeloid Leukemia: Impact of Reclassification Based on the 5th WHO and International Consensus Classification Criteria: A Korean Multicenter Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1