Leveraging shortest dependency paths in low-resource biomedical relation extraction.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS BMC Medical Informatics and Decision Making Pub Date : 2024-07-24 DOI:10.1186/s12911-024-02592-2
Saman Enayati, Slobodan Vucetic
{"title":"Leveraging shortest dependency paths in low-resource biomedical relation extraction.","authors":"Saman Enayati, Slobodan Vucetic","doi":"10.1186/s12911-024-02592-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biomedical Relation Extraction (RE) is essential for uncovering complex relationships between biomedical entities within text. However, training RE classifiers is challenging in low-resource biomedical applications with few labeled examples.</p><p><strong>Methods: </strong>We explore the potential of Shortest Dependency Paths (SDPs) to aid biomedical RE, especially in situations with limited labeled examples. In this study, we suggest various approaches to employ SDPs when creating word and sentence representations under supervised, semi-supervised, and in-context-learning settings.</p><p><strong>Results: </strong>Through experiments on three benchmark biomedical text datasets, we find that incorporating SDP-based representations enhances the performance of RE classifiers. The improvement is especially notable when working with small amounts of labeled data.</p><p><strong>Conclusion: </strong>SDPs offer valuable insights into the complex sentence structure found in many biomedical text passages. Our study introduces several straightforward techniques that, as demonstrated experimentally, effectively enhance the accuracy of RE classifiers.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02592-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Biomedical Relation Extraction (RE) is essential for uncovering complex relationships between biomedical entities within text. However, training RE classifiers is challenging in low-resource biomedical applications with few labeled examples.

Methods: We explore the potential of Shortest Dependency Paths (SDPs) to aid biomedical RE, especially in situations with limited labeled examples. In this study, we suggest various approaches to employ SDPs when creating word and sentence representations under supervised, semi-supervised, and in-context-learning settings.

Results: Through experiments on three benchmark biomedical text datasets, we find that incorporating SDP-based representations enhances the performance of RE classifiers. The improvement is especially notable when working with small amounts of labeled data.

Conclusion: SDPs offer valuable insights into the complex sentence structure found in many biomedical text passages. Our study introduces several straightforward techniques that, as demonstrated experimentally, effectively enhance the accuracy of RE classifiers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在低资源生物医学关系提取中利用最短依赖路径。
背景:生物医学关系提取(RE)对于揭示文本中生物医学实体之间的复杂关系至关重要。然而,在标注示例较少的低资源生物医学应用中,训练关系提取分类器具有挑战性:我们探索了最短依赖路径(SDP)在帮助生物医学 RE 方面的潜力,尤其是在标注示例有限的情况下。在这项研究中,我们提出了在监督、半监督和上下文学习设置下创建单词和句子表示时使用 SDP 的各种方法:通过对三个基准生物医学文本数据集的实验,我们发现采用基于 SDP 的表示法可以提高 RE 分类器的性能。在处理少量标注数据时,这种改进尤为显著:SDP 为了解许多生物医学文本中的复杂句子结构提供了宝贵的见解。我们的研究介绍了几种简单直接的技术,实验证明,这些技术能有效提高 RE 分类器的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
期刊最新文献
Real-world data to support post-market safety and performance of embolization coils: evidence generation from a medical device manufacturer and data institute partnership. Development of message passing-based graph convolutional networks for classifying cancer pathology reports Machine learning-based evaluation of prognostic factors for mortality and relapse in patients with acute lymphoblastic leukemia: a comparative simulation study A cross domain access control model for medical consortium based on DBSCAN and penalty function RCC-Supporter: supporting renal cell carcinoma treatment decision-making using machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1