首页 > 最新文献

BMC Medical Informatics and Decision Making最新文献

英文 中文
Application of machine learning for the diagnosis and prognosis of sepsis-induced acute respiratory distress syndrome: a systematic review and meta-analysis. 机器学习在败血症引起的急性呼吸窘迫综合征的诊断和预后中的应用:系统回顾和荟萃分析。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-07 DOI: 10.1186/s12911-026-03356-w
Mingcheng Dai, Ruo Wu, Kangshuai Zhou, Zhangling Xu, Yifan Shao, Wenzhen Zhou, Dian Zhang, Mingquan Chen
{"title":"Application of machine learning for the diagnosis and prognosis of sepsis-induced acute respiratory distress syndrome: a systematic review and meta-analysis.","authors":"Mingcheng Dai, Ruo Wu, Kangshuai Zhou, Zhangling Xu, Yifan Shao, Wenzhen Zhou, Dian Zhang, Mingquan Chen","doi":"10.1186/s12911-026-03356-w","DOIUrl":"https://doi.org/10.1186/s12911-026-03356-w","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable machine learning for depression risk prediction in adults with obesity: development of an online tool. 可解释的机器学习用于肥胖成人抑郁风险预测:在线工具的开发。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-07 DOI: 10.1186/s12911-026-03359-7
Yong Xie, YuJia Huo, Chunyu Zhang, Jinyu He, Jian Feng
{"title":"Explainable machine learning for depression risk prediction in adults with obesity: development of an online tool.","authors":"Yong Xie, YuJia Huo, Chunyu Zhang, Jinyu He, Jian Feng","doi":"10.1186/s12911-026-03359-7","DOIUrl":"https://doi.org/10.1186/s12911-026-03359-7","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A narrative review of clinical decision support systems in offloading footwear for diabetic foot ulcers. 临床决策支持系统在卸载鞋类糖尿病足溃疡的叙述回顾。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-07 DOI: 10.1186/s12911-026-03349-9
Kunal Kumar, Muhammad Ashad Kabir, Luke Donnan, Sayed Ahmed
{"title":"A narrative review of clinical decision support systems in offloading footwear for diabetic foot ulcers.","authors":"Kunal Kumar, Muhammad Ashad Kabir, Luke Donnan, Sayed Ahmed","doi":"10.1186/s12911-026-03349-9","DOIUrl":"https://doi.org/10.1186/s12911-026-03349-9","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable machine learning model for predicting short-term outcomes in sepsis- induced coagulopathy. 可解释的机器学习模型预测败血症引起的凝血病的短期结果。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-04 DOI: 10.1186/s12911-026-03363-x
Jinmei Wu, Xianwei Zhang, Chenglong Liang, Baoxin Wang, Xiangyuan Ruan, Yihua Dong, Xueyang Xu, Jingye Pan

Background: Sepsis-Induced coagulopathy (SIC) is not only a common complication in the development process of sepsis but also related to poor prognosis of sepsis. We aimed to establish a machine learning (ML) model to predict the 28-day mortality risk of patients with SIC.

Methods: We collected data for model training from the Medical Information Mart for Intensive Care IV Database version 2.2 to establish the model. We extracted patient data from the First Affiliated Hospital of Wenzhou Medical University for the model's external validation. We used Least Absolute Shrinkage and Selection Operator (LASSO) regression and logistic regression analysis to identify predictive factors for a 28-day mortality risk. Then, we built prognostic prediction models for SIC patients using multiple ML classification models. We evaluated predictive performance using Receiver Operating Characteristic (ROC) curves, calibration curves, and Decision Curve Analysis (DCA). We used Shapley Additive Explanations (SHAP) to interpret the models.

Results: We selected seventeen variables for model development, and the XGBoost model performed the best. The area under the curve (AUC) (95% CI) of the test set reached 0.840 (0.810-0.870), with an accuracy of 0.807, sensitivity of 0.836, and specificity of 0.798. The model also demonstrated excellent predictive performance in external validation, with an AUC (95% CI) of 0.864 (0.794-0.934).

Conclusion: We constructed an XGBoost model and provided model interpretability using the SHAP. This model provides a basis for assessing the 28-day mortality risk of patients with SIC, aiding in clinical decision support and the formulation of personalized treatment strategies.

背景:脓毒症致凝血病(SIC)不仅是脓毒症发展过程中常见的并发症,而且与脓毒症预后不良有关。我们的目标是建立一个机器学习(ML)模型来预测SIC患者28天的死亡风险。方法:从重症监护医学信息市场数据库2.2版中收集数据进行模型训练,建立模型。我们从温州医科大学第一附属医院提取患者数据,对模型进行外部验证。我们使用最小绝对收缩和选择算子(LASSO)回归和逻辑回归分析来确定28天死亡风险的预测因素。然后,我们使用多个ML分类模型建立了SIC患者的预后预测模型。我们使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)来评估预测性能。我们使用Shapley加性解释(SHAP)来解释模型。结果:我们选择了17个变量进行模型开发,其中XGBoost模型表现最好。该检验集的曲线下面积(AUC) (95% CI)达到0.840(0.810-0.870),准确率为0.807,灵敏度为0.836,特异性为0.798。该模型在外部验证中也表现出良好的预测性能,AUC (95% CI)为0.864(0.794-0.934)。结论:我们构建了一个XGBoost模型,并使用SHAP提供了模型的可解释性。该模型为评估SIC患者28天死亡风险提供了依据,有助于临床决策支持和个性化治疗策略的制定。
{"title":"Explainable machine learning model for predicting short-term outcomes in sepsis- induced coagulopathy.","authors":"Jinmei Wu, Xianwei Zhang, Chenglong Liang, Baoxin Wang, Xiangyuan Ruan, Yihua Dong, Xueyang Xu, Jingye Pan","doi":"10.1186/s12911-026-03363-x","DOIUrl":"https://doi.org/10.1186/s12911-026-03363-x","url":null,"abstract":"<p><strong>Background: </strong>Sepsis-Induced coagulopathy (SIC) is not only a common complication in the development process of sepsis but also related to poor prognosis of sepsis. We aimed to establish a machine learning (ML) model to predict the 28-day mortality risk of patients with SIC.</p><p><strong>Methods: </strong>We collected data for model training from the Medical Information Mart for Intensive Care IV Database version 2.2 to establish the model. We extracted patient data from the First Affiliated Hospital of Wenzhou Medical University for the model's external validation. We used Least Absolute Shrinkage and Selection Operator (LASSO) regression and logistic regression analysis to identify predictive factors for a 28-day mortality risk. Then, we built prognostic prediction models for SIC patients using multiple ML classification models. We evaluated predictive performance using Receiver Operating Characteristic (ROC) curves, calibration curves, and Decision Curve Analysis (DCA). We used Shapley Additive Explanations (SHAP) to interpret the models.</p><p><strong>Results: </strong>We selected seventeen variables for model development, and the XGBoost model performed the best. The area under the curve (AUC) (95% CI) of the test set reached 0.840 (0.810-0.870), with an accuracy of 0.807, sensitivity of 0.836, and specificity of 0.798. The model also demonstrated excellent predictive performance in external validation, with an AUC (95% CI) of 0.864 (0.794-0.934).</p><p><strong>Conclusion: </strong>We constructed an XGBoost model and provided model interpretability using the SHAP. This model provides a basis for assessing the 28-day mortality risk of patients with SIC, aiding in clinical decision support and the formulation of personalized treatment strategies.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146118006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors associated with clinical coders' intention to use the international classification of diseases 11th revision (ICD-11): a cross-sectional study in Iran. 与临床编码员使用国际疾病分类第11版(ICD-11)意图相关的因素:伊朗的一项横断面研究
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-04 DOI: 10.1186/s12911-026-03368-6
Jahanpour Alipour, Abolfazl Payandeh, Mohammad Hosein Hayavi-Haghighi
{"title":"Factors associated with clinical coders' intention to use the international classification of diseases 11th revision (ICD-11): a cross-sectional study in Iran.","authors":"Jahanpour Alipour, Abolfazl Payandeh, Mohammad Hosein Hayavi-Haghighi","doi":"10.1186/s12911-026-03368-6","DOIUrl":"https://doi.org/10.1186/s12911-026-03368-6","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishing a prediction model for the therapeutic outcomes of short-term and long-term orthokeratology treatment: using baseline data and changes in AL as dynamic variables. 建立角膜塑形术短期和长期治疗效果预测模型:以基线数据和AL变化为动态变量。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-03 DOI: 10.1186/s12911-026-03339-x
Zixun Wang, Xiaoxue Hu, Feng Chang, Xiaoling Zhang, Boxuan Sun, Rui Li, Weiping Lin, Ruihua Wei
{"title":"Establishing a prediction model for the therapeutic outcomes of short-term and long-term orthokeratology treatment: using baseline data and changes in AL as dynamic variables.","authors":"Zixun Wang, Xiaoxue Hu, Feng Chang, Xiaoling Zhang, Boxuan Sun, Rui Li, Weiping Lin, Ruihua Wei","doi":"10.1186/s12911-026-03339-x","DOIUrl":"https://doi.org/10.1186/s12911-026-03339-x","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable machine learning based decision-making system for lung adenocarcinoma metastasis: a population-based study with exploration of multi-classification models. 基于可解释机器学习的肺腺癌转移决策系统:基于人群的多分类模型探索研究。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-03 DOI: 10.1186/s12911-026-03341-3
Jian Xu, Shuo Chen, Chang Zhao, Miao He, Feng Luo, Xintian Cai, Jiantao Wang, Zhendong Ding, TieWa Zhang
{"title":"Interpretable machine learning based decision-making system for lung adenocarcinoma metastasis: a population-based study with exploration of multi-classification models.","authors":"Jian Xu, Shuo Chen, Chang Zhao, Miao He, Feng Luo, Xintian Cai, Jiantao Wang, Zhendong Ding, TieWa Zhang","doi":"10.1186/s12911-026-03341-3","DOIUrl":"https://doi.org/10.1186/s12911-026-03341-3","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable AI for critical care: a systematic review of interpretable models for sepsis and ICU mortality prediction. 重症监护可解释的人工智能:败血症和ICU死亡率预测可解释模型的系统综述
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-03 DOI: 10.1186/s12911-026-03344-0
V S Athukorala, W M K S Ilmini
{"title":"Explainable AI for critical care: a systematic review of interpretable models for sepsis and ICU mortality prediction.","authors":"V S Athukorala, W M K S Ilmini","doi":"10.1186/s12911-026-03344-0","DOIUrl":"https://doi.org/10.1186/s12911-026-03344-0","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Textbook-level medical knowledge in large language models: comparative evaluation using Japanese National Medical Examination. 教科书水平的医学知识在大语言模型:比较评价使用日本国家医学考试。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-03 DOI: 10.1186/s12911-026-03370-y
Mingxin Liu, Tsuyoshi Okuhara, Zhehao Dai, Minghong Zhao, Wenqiang Yin, Hiroko Okada, Emi Furukawa, Takahiro Kiuchi
{"title":"Textbook-level medical knowledge in large language models: comparative evaluation using Japanese National Medical Examination.","authors":"Mingxin Liu, Tsuyoshi Okuhara, Zhehao Dai, Minghong Zhao, Wenqiang Yin, Hiroko Okada, Emi Furukawa, Takahiro Kiuchi","doi":"10.1186/s12911-026-03370-y","DOIUrl":"https://doi.org/10.1186/s12911-026-03370-y","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and validation of a predictive model for benefits of tunnel-type mediastinal lymph node dissection in lung cancer patients based on the SEER database. 基于SEER数据库的肺癌患者隧道型纵隔淋巴结清扫获益预测模型的构建与验证
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-02 DOI: 10.1186/s12911-026-03347-x
Weijie Deng, Shili Ding, Zhenxing Cai, Zhimin Zheng
{"title":"Construction and validation of a predictive model for benefits of tunnel-type mediastinal lymph node dissection in lung cancer patients based on the SEER database.","authors":"Weijie Deng, Shili Ding, Zhenxing Cai, Zhimin Zheng","doi":"10.1186/s12911-026-03347-x","DOIUrl":"https://doi.org/10.1186/s12911-026-03347-x","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Medical Informatics and Decision Making
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1