Elizabeth S Allman, Hector Baños, Marina Garrote-Lopez, John A Rhodes
{"title":"Identifiability of Level-1 Species Networks from Gene Tree Quartets.","authors":"Elizabeth S Allman, Hector Baños, Marina Garrote-Lopez, John A Rhodes","doi":"10.1007/s11538-024-01339-4","DOIUrl":null,"url":null,"abstract":"<p><p>When hybridization or other forms of lateral gene transfer have occurred, evolutionary relationships of species are better represented by phylogenetic networks than by trees. While inference of such networks remains challenging, several recently proposed methods are based on quartet concordance factors-the probabilities that a tree relating a gene sampled from the species displays the possible 4-taxon relationships. Building on earlier results, we investigate what level-1 network features are identifiable from concordance factors under the network multispecies coalescent model. We obtain results on both topological features of the network, and numerical parameters, uncovering a number of failures of identifiability related to 3-cycles in the network. Addressing these identifiability issues is essential for designing statistically consistent inference methods.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01339-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
When hybridization or other forms of lateral gene transfer have occurred, evolutionary relationships of species are better represented by phylogenetic networks than by trees. While inference of such networks remains challenging, several recently proposed methods are based on quartet concordance factors-the probabilities that a tree relating a gene sampled from the species displays the possible 4-taxon relationships. Building on earlier results, we investigate what level-1 network features are identifiable from concordance factors under the network multispecies coalescent model. We obtain results on both topological features of the network, and numerical parameters, uncovering a number of failures of identifiability related to 3-cycles in the network. Addressing these identifiability issues is essential for designing statistically consistent inference methods.