Identifiability of Level-1 Species Networks from Gene Tree Quartets.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-25 DOI:10.1007/s11538-024-01339-4
Elizabeth S Allman, Hector Baños, Marina Garrote-Lopez, John A Rhodes
{"title":"Identifiability of Level-1 Species Networks from Gene Tree Quartets.","authors":"Elizabeth S Allman, Hector Baños, Marina Garrote-Lopez, John A Rhodes","doi":"10.1007/s11538-024-01339-4","DOIUrl":null,"url":null,"abstract":"<p><p>When hybridization or other forms of lateral gene transfer have occurred, evolutionary relationships of species are better represented by phylogenetic networks than by trees. While inference of such networks remains challenging, several recently proposed methods are based on quartet concordance factors-the probabilities that a tree relating a gene sampled from the species displays the possible 4-taxon relationships. Building on earlier results, we investigate what level-1 network features are identifiable from concordance factors under the network multispecies coalescent model. We obtain results on both topological features of the network, and numerical parameters, uncovering a number of failures of identifiability related to 3-cycles in the network. Addressing these identifiability issues is essential for designing statistically consistent inference methods.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01339-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

When hybridization or other forms of lateral gene transfer have occurred, evolutionary relationships of species are better represented by phylogenetic networks than by trees. While inference of such networks remains challenging, several recently proposed methods are based on quartet concordance factors-the probabilities that a tree relating a gene sampled from the species displays the possible 4-taxon relationships. Building on earlier results, we investigate what level-1 network features are identifiable from concordance factors under the network multispecies coalescent model. We obtain results on both topological features of the network, and numerical parameters, uncovering a number of failures of identifiability related to 3-cycles in the network. Addressing these identifiability issues is essential for designing statistically consistent inference methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从基因树四元组识别一级物种网络的可识别性
当发生杂交或其他形式的横向基因转移时,物种的进化关系用系统发生网络来表示比用树来表示更好。虽然推断此类网络仍具有挑战性,但最近提出的几种方法都是基于四元组一致性因子--从物种中抽样的基因树显示可能的四元组关系的概率。在早期研究成果的基础上,我们研究了在网络多物种凝聚模型下,哪些一级网络特征可以从一致性因子中识别出来。我们获得了关于网络拓扑特征和数值参数的结果,发现了一些与网络中的 3 个周期有关的可识别性失误。解决这些可识别性问题对于设计统计一致的推断方法至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1