Lorenz Leitner, Thomas M Kessler, Shawna E McCallin
{"title":"Innovations in Phage Therapy for Urinary Tract Infection.","authors":"Lorenz Leitner, Thomas M Kessler, Shawna E McCallin","doi":"10.1016/j.euf.2024.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary tract infections (UTIs) are among the most common infections. Increasing rates of multidrug-resistant bacteria are complicating treatment, necessitating alternative strategies. Bacteriophages (phages) are viruses that only target and kill bacteria, and this specific lytic activity can be harnessed therapeutically. Bioengineering holds innovative potential for the use of phages as diagnostic and therapeutic tools for rapid targeted treatments. However, phage therapy and phage products are not currently approved by regulatory agencies in the Western world and can only be applied under specific regulatory frameworks in individual countries. Further basic and clinical research is essential to address the challenges of phage therapy and to explore its value in combating UTIs. PATIENT SUMMARY: Urinary tract infections (UTIs) are becoming more difficult to treat because of antibiotic resistance. Bacteriophages are viruses that kill bacteria and have promise for UTI treatment, but more research and regulatory approval are needed before they become more widely available.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.euf.2024.07.006","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Urinary tract infections (UTIs) are among the most common infections. Increasing rates of multidrug-resistant bacteria are complicating treatment, necessitating alternative strategies. Bacteriophages (phages) are viruses that only target and kill bacteria, and this specific lytic activity can be harnessed therapeutically. Bioengineering holds innovative potential for the use of phages as diagnostic and therapeutic tools for rapid targeted treatments. However, phage therapy and phage products are not currently approved by regulatory agencies in the Western world and can only be applied under specific regulatory frameworks in individual countries. Further basic and clinical research is essential to address the challenges of phage therapy and to explore its value in combating UTIs. PATIENT SUMMARY: Urinary tract infections (UTIs) are becoming more difficult to treat because of antibiotic resistance. Bacteriophages are viruses that kill bacteria and have promise for UTI treatment, but more research and regulatory approval are needed before they become more widely available.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.