{"title":"Piezoelectric Microacoustic Metamaterial Filters","authors":"Onurcan Kaya;Xuanyi Zhao;Cristian Cassella","doi":"10.1109/TUFFC.2024.3432849","DOIUrl":null,"url":null,"abstract":"We present the first microacoustic metamaterial filters (MMFs). The bandpass of the reported MMFs is not generated by coupling, electrically or mechanically, various acoustic resonances; instead, it originates from the passbands and stopbands of a chain of three acoustic metamaterial (AM) structures. These structures form an AM transmission line (AMTL) and two AM reflectors (AMRs), respectively. Two single metal strips serve as input and output transducers with a wideband frequency response. Since MMFs do not rely on resonators, they do not require high-resolution trimming or mass-loading steps to accurately tune the resonance frequency difference between various microacoustic resonant devices. These steps often involve finely controlling the thickness of a device layer, with resolutions that can be as low as a few Angstroms when building GHz filters. The acoustic bandwidth of MMFs is mostly determined by geometrical and mechanical parameters of their AM structures. MMFs necessitate external circuit components for impedance matching, in contrast to the existing microacoustic filters that often employ circuit components only to eliminate ripples within their passband. We have designed and constructed the first MMFs from a 400-nm-thick scandium-doped aluminum nitride (AlScN) film using a 30% scandium-doping concentration. These devices operate in the radio frequency (RF) range. We validated these devices’ performance through finite-element modeling (FEM) simulations and through measurements of a set of fabricated devices. When matched with ideal circuit components, the built MMFs exhibit filter responses with a center frequency in the ultrahigh-frequency range, a fractional bandwidth (FBW) of ~2.54%, a loss of ~4.9 dB, an in-band group delay between \n<inline-formula> <tex-math>$70~\\pm ~25$ </tex-math></inline-formula>\n ns, and a temperature coefficient of frequency (TCF) of ~22.2 ppm/° C.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1063-1073"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10608172/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present the first microacoustic metamaterial filters (MMFs). The bandpass of the reported MMFs is not generated by coupling, electrically or mechanically, various acoustic resonances; instead, it originates from the passbands and stopbands of a chain of three acoustic metamaterial (AM) structures. These structures form an AM transmission line (AMTL) and two AM reflectors (AMRs), respectively. Two single metal strips serve as input and output transducers with a wideband frequency response. Since MMFs do not rely on resonators, they do not require high-resolution trimming or mass-loading steps to accurately tune the resonance frequency difference between various microacoustic resonant devices. These steps often involve finely controlling the thickness of a device layer, with resolutions that can be as low as a few Angstroms when building GHz filters. The acoustic bandwidth of MMFs is mostly determined by geometrical and mechanical parameters of their AM structures. MMFs necessitate external circuit components for impedance matching, in contrast to the existing microacoustic filters that often employ circuit components only to eliminate ripples within their passband. We have designed and constructed the first MMFs from a 400-nm-thick scandium-doped aluminum nitride (AlScN) film using a 30% scandium-doping concentration. These devices operate in the radio frequency (RF) range. We validated these devices’ performance through finite-element modeling (FEM) simulations and through measurements of a set of fabricated devices. When matched with ideal circuit components, the built MMFs exhibit filter responses with a center frequency in the ultrahigh-frequency range, a fractional bandwidth (FBW) of ~2.54%, a loss of ~4.9 dB, an in-band group delay between
$70~\pm ~25$
ns, and a temperature coefficient of frequency (TCF) of ~22.2 ppm/° C.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.