Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies.

IF 29.9 1区 医学 Q1 PHYSIOLOGY Physiological reviews Pub Date : 2024-10-01 Epub Date: 2024-07-25 DOI:10.1152/physrev.00039.2023
Yuanpu Peter Di, Jenna Marie Kuhn, Maria Luisa Mangoni
{"title":"Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies.","authors":"Yuanpu Peter Di, Jenna Marie Kuhn, Maria Luisa Mangoni","doi":"10.1152/physrev.00039.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1643-1677"},"PeriodicalIF":29.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00039.2023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肺部抗菌蛋白和肽:从宿主防御到治疗策略。
与慢性呼吸道疾病(包括复杂性肺炎、哮喘、间质性肺病和慢性阻塞性肺病)相关的呼吸道感染在全球范围内造成了严重的发病率和死亡率,是一个重大的公共卫生问题。肺部健康和肺部疾病的预防有赖于气道表面液体分泌、粘膜纤毛清除和充分的免疫反应机制,以消灭吸入的病原体和环境中的微粒物质。抗菌蛋白和肽有助于维持人体肺部的抗菌环境,以消灭病原体并防止其引发肺部疾病。肺部环境中最主要的抗菌分子包括人类α-和β-防御素和柔毛素,以及许多其他具有抗菌和抗生物膜活性的宿主防御分子,如 PLUNC(腭、肺和鼻上皮细胞克隆)家族蛋白、elafin、采集蛋白、乳铁蛋白、溶菌酶、粘蛋白、分泌型白细胞蛋白酶抑制剂、表面活性蛋白 SP-A 和 SP-D 以及 RNases。研究表明,抗微生物分子表达水平的变化与炎症调节、加重病情、病理变化和慢性肺病严重程度的改变有关。抗菌分子还具有抗癌和致癌作用。肺部抗微生物蛋白和肽是治疗和预防耐多药细菌感染和抗癌疗法的有前途的替代疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological reviews
Physiological reviews 医学-生理学
CiteScore
56.50
自引率
0.90%
发文量
53
期刊介绍: Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.
期刊最新文献
Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. The calculating brain. Pathophysiology of syncope: current concepts and their development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1