Electrochemical and Fluorescence MnO2-Polymer Dot Electrode Sensor for Osteoarthritis-Based Peroxisomal β-Oxidation Knockout Model.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-07-22 DOI:10.3390/bios14070357
Akhmad Irhas Robby, Songling Jiang, Eun-Jung Jin, Sung Young Park
{"title":"Electrochemical and Fluorescence MnO<sub>2</sub>-Polymer Dot Electrode Sensor for Osteoarthritis-Based Peroxisomal β-Oxidation Knockout Model.","authors":"Akhmad Irhas Robby, Songling Jiang, Eun-Jung Jin, Sung Young Park","doi":"10.3390/bios14070357","DOIUrl":null,"url":null,"abstract":"<p><p>A coenzyme A (CoA-SH)-responsive dual electrochemical and fluorescence-based sensor was designed utilizing an MnO<sub>2</sub>-immobilized-polymer-dot (MnO<sub>2</sub>@D-PD)-coated electrode for the sensitive detection of osteoarthritis (OA) in a peroxisomal β-oxidation knockout model. The CoA-SH-responsive MnO<sub>2</sub>@D-PD-coated electrode interacted sensitively with CoA-SH in OA chondrocytes, triggering electroconductivity and fluorescence changes due to cleavage of the MnO<sub>2</sub> nanosheet on the electrode. The MnO<sub>2</sub>@D-PD-coated electrode can detect CoA-SH in immature articular chondrocyte primary cells, as indicated by the significant increase in resistance in the control medium (R<sub>24h</sub> = 2.17 MΩ). This sensor also sensitively monitored the increase in resistance in chondrocyte cells in the presence of acetyl-CoA inducers, such as phytol (Phy) and sodium acetate (SA), in the medium (R<sub>24h</sub> = 2.67, 3.08 MΩ, respectively), compared to that in the control medium, demonstrating the detection efficiency of the sensor towards the increase in the CoA-SH concentration. Furthermore, fluorescence recovery was observed owing to MnO<sub>2</sub> cleavage, particularly in the Phy- and SA-supplemented media. The transcription levels of OA-related anabolic (<i>Acan</i>) and catabolic factors (<i>Adamts5</i>) in chondrocytes also confirmed the interaction between CoA-SH and the MnO<sub>2</sub>@D-PD-coated electrode. Additionally, electrode integration with a wireless sensing system provides inline monitoring via a smartphone, which can potentially be used for rapid and sensitive OA diagnosis.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275033/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14070357","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A coenzyme A (CoA-SH)-responsive dual electrochemical and fluorescence-based sensor was designed utilizing an MnO2-immobilized-polymer-dot (MnO2@D-PD)-coated electrode for the sensitive detection of osteoarthritis (OA) in a peroxisomal β-oxidation knockout model. The CoA-SH-responsive MnO2@D-PD-coated electrode interacted sensitively with CoA-SH in OA chondrocytes, triggering electroconductivity and fluorescence changes due to cleavage of the MnO2 nanosheet on the electrode. The MnO2@D-PD-coated electrode can detect CoA-SH in immature articular chondrocyte primary cells, as indicated by the significant increase in resistance in the control medium (R24h = 2.17 MΩ). This sensor also sensitively monitored the increase in resistance in chondrocyte cells in the presence of acetyl-CoA inducers, such as phytol (Phy) and sodium acetate (SA), in the medium (R24h = 2.67, 3.08 MΩ, respectively), compared to that in the control medium, demonstrating the detection efficiency of the sensor towards the increase in the CoA-SH concentration. Furthermore, fluorescence recovery was observed owing to MnO2 cleavage, particularly in the Phy- and SA-supplemented media. The transcription levels of OA-related anabolic (Acan) and catabolic factors (Adamts5) in chondrocytes also confirmed the interaction between CoA-SH and the MnO2@D-PD-coated electrode. Additionally, electrode integration with a wireless sensing system provides inline monitoring via a smartphone, which can potentially be used for rapid and sensitive OA diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于过氧异构体β氧化基因敲除模型的骨关节炎电化学和荧光 MnO2 聚合物点电极传感器
利用MnO2-固定化聚合物点(MnO2@D-PD)涂层电极设计了一种基于电化学和荧光的辅酶A(CoA-SH)双响应传感器,用于在过氧化物酶体β氧化基因敲除模型中灵敏检测骨关节炎(OA)。CoA-SH响应型MnO2@D-PD涂层电极与OA软骨细胞中的CoA-SH灵敏地相互作用,由于电极上的MnO2纳米片的裂解而引发电导率和荧光变化。MnO2@D-PD涂层电极可以检测未成熟关节软骨细胞原代细胞中的CoA-SH,这表现在对照培养基中电阻的显著增加(R24h = 2.17 MΩ)。与对照培养基相比,该传感器还能灵敏监测培养基中存在乙酰-CoA 诱导剂(如植醇(Phy)和醋酸钠(SA))时软骨细胞电阻的增加(R24h = 2.67、3.08 MΩ),这表明传感器对 CoA-SH 浓度增加的检测效率很高。此外,由于 MnO2 的裂解,还观察到荧光恢复,尤其是在 Phy 和 SA 补充培养基中。软骨细胞中与 OA 相关的合成代谢因子(Acan)和分解代谢因子(Adamts5)的转录水平也证实了 CoA-SH 与 MnO2@D-PD 涂层电极之间的相互作用。此外,电极还与无线传感系统集成,可通过智能手机进行在线监测,从而有可能用于快速、灵敏的 OA 诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Correction: Zhang et al. A Study on the Mechanism and Properties of a Self-Powered H2O2 Electrochemical Sensor Based on a Fuel Cell Configuration with FePc and Graphene Cathode Catalyst Materials. Biosensors 2024, 14, 290. Improved Glycemic Control during a One-Week Adventure Camp in Adolescents with Type 1 Diabetes-The DIACAMP Study. Development of a Modular miRNA-Responsive Biosensor for Organ-Specific Evaluation of Liver Injury. A Novel Ferrocene-Linked Thionine as a Dual Redox Mediator for the Electrochemical Detection of Dopamine and Hydrogen Peroxide. Editorial to the Special Issue "Advances in Optical Biosensors and Chemical Sensors".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1