Rapid, effective, and cost-effective methods for large-scale screening of pesticide residues in the environment and agricultural products are important for assessing potential environmental risks and safeguarding human health. Here, we constructed a novel aggregation-induced emission (AIE) electrochemical aptamer (Apt) sensor based on red-emissive sulfur quantum dots (SQDs), which aimed at the rapid screening and quantitative detection of malathion. SQDs were prepared using a two-step oxidation method with good electrochemiluminescence (ECL) optical properties. These SQDs were modified onto the electrode surface to serve as ECL luminophores. Subsequently, Apt was introduced and modified to form a double-helix structure with the complementary chain (cDNA). The ECL signal was reduced because the biomolecules had poor electrical conductivity and inefficient electron transfer. When the target malathion was added, the double helix structure was unraveled, the malathion Apt fell off the electrode surface, and the ECL signal was restored. The linear range of detection was 1.0 × 10-13-1.0 × 10-8 mol·L-1, and the detection limit was 0.219 fM. The successful preparation of the sensor not only develops the ECL optical properties of SQDs but also expands the application of SQDs in ECL sensing.
{"title":"A Novel Aggregation-Induced Emission-Based Electrochemiluminescence Aptamer Sensor Utilizing Red-Emissive Sulfur Quantum Dots for Rapid and Sensitive Malathion Detection.","authors":"Yajun Wu, Dongxiao Ma, Xiaoli Zhu, Fangquan Xia","doi":"10.3390/bios15010064","DOIUrl":"10.3390/bios15010064","url":null,"abstract":"<p><p>Rapid, effective, and cost-effective methods for large-scale screening of pesticide residues in the environment and agricultural products are important for assessing potential environmental risks and safeguarding human health. Here, we constructed a novel aggregation-induced emission (AIE) electrochemical aptamer (Apt) sensor based on red-emissive sulfur quantum dots (SQDs), which aimed at the rapid screening and quantitative detection of malathion. SQDs were prepared using a two-step oxidation method with good electrochemiluminescence (ECL) optical properties. These SQDs were modified onto the electrode surface to serve as ECL luminophores. Subsequently, Apt was introduced and modified to form a double-helix structure with the complementary chain (cDNA). The ECL signal was reduced because the biomolecules had poor electrical conductivity and inefficient electron transfer. When the target malathion was added, the double helix structure was unraveled, the malathion Apt fell off the electrode surface, and the ECL signal was restored. The linear range of detection was 1.0 × 10<sup>-13</sup>-1.0 × 10<sup>-8</sup> mol·L<sup>-1</sup>, and the detection limit was 0.219 fM. The successful preparation of the sensor not only develops the ECL optical properties of SQDs but also expands the application of SQDs in ECL sensing.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge. This study developed an immunosensor by engineering an immunorecognition interface on the outer surface of mesoporous silica nanochannel film (SNF) and confining a Co3O4 nanocatalyst within the SNF nanochannels to improve the luminol ECL efficiency. The SNF was grown on an indium tin oxide (ITO) electrode using the simple Stöber solution growth method. A Co3O4 nanocatalyst was successfully confined within the SNF nanochannels through in situ electrodeposition, confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The confined Co3O4 demonstrated excellent electrocatalytic activity, effectively enhancing luminol and H2O2 oxidation and boosting the ECL signal under neutral conditions. Using interleukin-6 (IL-6) as a proof-of-concept demonstration, the epoxy functionalization of the SNF outer surface enabled the covalent immobilization of capture antibodies, forming a specific immunorecognition interface. IL-6 binding induced immunocomplex formation, which reduced the ECL signal and allowed for quantitative detection. The immunosensor showed a linear detection range for IL-6 from 1 fg mL-1 to 10 ng mL-1, with a limit of detection (LOD) of 0.64 fg mL-1. It also demonstrated good selectivity and anti-interference capabilities, enabling the successful detection of IL-6 in artificial GCF samples.
{"title":"Sensitive Detection of Biomarker in Gingival Crevicular Fluid Based on Enhanced Electrochemiluminescence by Nanochannel-Confined Co<sub>3</sub>O<sub>4</sub> Nanocatalyst.","authors":"Changfeng Zhu, Yujiao Zhao, Jiyang Liu","doi":"10.3390/bios15010063","DOIUrl":"10.3390/bios15010063","url":null,"abstract":"<p><p>The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge. This study developed an immunosensor by engineering an immunorecognition interface on the outer surface of mesoporous silica nanochannel film (SNF) and confining a Co<sub>3</sub>O<sub>4</sub> nanocatalyst within the SNF nanochannels to improve the luminol ECL efficiency. The SNF was grown on an indium tin oxide (ITO) electrode using the simple Stöber solution growth method. A Co<sub>3</sub>O<sub>4</sub> nanocatalyst was successfully confined within the SNF nanochannels through in situ electrodeposition, confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The confined Co<sub>3</sub>O<sub>4</sub> demonstrated excellent electrocatalytic activity, effectively enhancing luminol and H<sub>2</sub>O<sub>2</sub> oxidation and boosting the ECL signal under neutral conditions. Using interleukin-6 (IL-6) as a proof-of-concept demonstration, the epoxy functionalization of the SNF outer surface enabled the covalent immobilization of capture antibodies, forming a specific immunorecognition interface. IL-6 binding induced immunocomplex formation, which reduced the ECL signal and allowed for quantitative detection. The immunosensor showed a linear detection range for IL-6 from 1 fg mL<sup>-1</sup> to 10 ng mL<sup>-1</sup>, with a limit of detection (LOD) of 0.64 fg mL<sup>-1</sup>. It also demonstrated good selectivity and anti-interference capabilities, enabling the successful detection of IL-6 in artificial GCF samples.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamal Marfatia, Jing Ni, Veronica Preda, Noushin Nasiri
Timely ketone detection in patients with type 1 diabetes mellitus (T1DM) is critical for the effective management of diabetic ketoacidosis (DKA). This systematic review evaluates the current literature on breath-based analysis for ketone detection in T1DM, highlighting nanotechnology as a potential for a non-invasive alternative to blood-based ketone measurements. A comprehensive search across 5 databases identified 11 studies meeting inclusion criteria, showcasing various breath analysis techniques, such as semiconducting gas sensors, colorimetry, and nanoparticle-based chemo-resistive sensors. These studies report high sensitivity and correlation between breath acetone (BrAce) levels and blood ketones, with some demonstrating accuracies up to 94.7% and correlations reaching R2 values as high as 0.98. However, significant heterogeneity in methodologies and cut-off values limits device comparability and precludes meta-analysis. Despite these challenges, the findings indicate that BrAce monitoring could offer significant clinical benefits by enabling the earlier detection of ketone buildup, reducing DKA-related hospitalisations and healthcare costs. Standardising BrAce measurement techniques and sensitivity thresholds is essential to broaden clinical adoption. This review underscores the promise of nanotechnology-based breath analysis as a transformative tool for DKA management, with potential utility across varied ketotic conditions.
{"title":"Is Breath Best? A Systematic Review on the Accuracy and Utility of Nanotechnology Based Breath Analysis of Ketones in Type 1 Diabetes.","authors":"Kamal Marfatia, Jing Ni, Veronica Preda, Noushin Nasiri","doi":"10.3390/bios15010062","DOIUrl":"10.3390/bios15010062","url":null,"abstract":"<p><p>Timely ketone detection in patients with type 1 diabetes mellitus (T1DM) is critical for the effective management of diabetic ketoacidosis (DKA). This systematic review evaluates the current literature on breath-based analysis for ketone detection in T1DM, highlighting nanotechnology as a potential for a non-invasive alternative to blood-based ketone measurements. A comprehensive search across 5 databases identified 11 studies meeting inclusion criteria, showcasing various breath analysis techniques, such as semiconducting gas sensors, colorimetry, and nanoparticle-based chemo-resistive sensors. These studies report high sensitivity and correlation between breath acetone (BrAce) levels and blood ketones, with some demonstrating accuracies up to 94.7% and correlations reaching R<sup>2</sup> values as high as 0.98. However, significant heterogeneity in methodologies and cut-off values limits device comparability and precludes meta-analysis. Despite these challenges, the findings indicate that BrAce monitoring could offer significant clinical benefits by enabling the earlier detection of ketone buildup, reducing DKA-related hospitalisations and healthcare costs. Standardising BrAce measurement techniques and sensitivity thresholds is essential to broaden clinical adoption. This review underscores the promise of nanotechnology-based breath analysis as a transformative tool for DKA management, with potential utility across varied ketotic conditions.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The burgeoning field of biosensors has seen significant advancements with the induction of zinc oxide (ZnO) nanostructures, because of their unique structural, electrical, and optical properties. ZnO nanostructures provide numerous benefits for biosensor applications. Their superior electron mobility enables effective electron transfer between the bioreceptor and transducer, enhancing sensitivity and reducing detection limits. Furthermore, ZnO's biocompatibility and non-toxicity make it ideal for in vivo applications, reducing the chances of adverse biological responses. This review paper explores the prospects of ZnO nanostructures in the development of biosensors, focusing on their morphological and structural characteristics. Various synthesis techniques, that include sol-gel, sputtering, and chemical vapor deposition, were successfully employed to prepare different ZnO nanostructures, like nanorods, nanotubes, and nanowires. The various findings in this field underscore the efficacy of ZnO nanostructures in enhancing the specificity and sensitivity of biosensors, presenting a promising avenue for the advancement of point-of-care diagnostic devices.
{"title":"Potential of Zinc Oxide Nanostructures in Biosensor Application.","authors":"Ibrahim M Maafa","doi":"10.3390/bios15010061","DOIUrl":"10.3390/bios15010061","url":null,"abstract":"<p><p>The burgeoning field of biosensors has seen significant advancements with the induction of zinc oxide (ZnO) nanostructures, because of their unique structural, electrical, and optical properties. ZnO nanostructures provide numerous benefits for biosensor applications. Their superior electron mobility enables effective electron transfer between the bioreceptor and transducer, enhancing sensitivity and reducing detection limits. Furthermore, ZnO's biocompatibility and non-toxicity make it ideal for in vivo applications, reducing the chances of adverse biological responses. This review paper explores the prospects of ZnO nanostructures in the development of biosensors, focusing on their morphological and structural characteristics. Various synthesis techniques, that include sol-gel, sputtering, and chemical vapor deposition, were successfully employed to prepare different ZnO nanostructures, like nanorods, nanotubes, and nanowires. The various findings in this field underscore the efficacy of ZnO nanostructures in enhancing the specificity and sensitivity of biosensors, presenting a promising avenue for the advancement of point-of-care diagnostic devices.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Zhang, Meijing Ma, Jiahui Wang, Yurui Zhou, Xueji Zhang, Guodong Liu
MicroRNA122 (miR-122) is a microRNA that is highly expressed in hepatocytes and has been identified as a prospective therapeutic target and biomarker for liver injury. An expanding body of research has demonstrated that miR-122 is a critical regulator in both the initiation and progression of a wide range of liver diseases. Traditional methods for detecting miR-122 mainly include Northern blotting and qRT-PCR, but they are technically complex and cumbersome, requiring expensive instruments and high technical requirements. In this paper, we present a novel rapid testing method utilizing a lateral flow nucleic acid biosensor (LFNAB) for the sensitive and time-efficient detection of miR-122. This approach offers several advantages, including a high specificity for miR-122, the ability to detect low concentrations of the target molecule, and a significantly reduced testing time compared to conventional detection methods. In this study, a thiol-modified single-stranded detection DNA probe (Det-DNA), a biotinylated single-stranded capture DNA probe (Cap-DNA), and a biotinylated single-stranded control DNA probe (Con-DNA) are used to construct the LFNAB. A gold nanoparticle (AuNP) is a colored tag, which is used to label the Det-DNA probe. The principle of detecting miR-122 is based on dual DNA-miRNA hybridization reactions on the LFNAB to form sandwich-type AuNP-Det-DNA-miR-122-Cap-DNA complexes, which are captured on the test area of LFNAB for visualization and quantification. After systematic optimization of conditions of experiment, the response of LFNAB was highly linear within the scope of 0 pM-100 pM miR-122, and the detection limit in 15 min was 3.90 pM. The use of LFNAB to detect miR-122 in serum and fingertip blood has yielded satisfactory results. This successful application indicates the effectiveness of LFNAB in detecting miR-122 in both serum and fingertip blood samples, showcasing its potential utility in clinical and research settings for assessing miR-122 levels in different biological samples.
{"title":"Rapid Detection of microRNA-122 in Serum and Finger Blood Using a Lateral Flow Nucleic Acid Biosensor.","authors":"Min Zhang, Meijing Ma, Jiahui Wang, Yurui Zhou, Xueji Zhang, Guodong Liu","doi":"10.3390/bios15010058","DOIUrl":"10.3390/bios15010058","url":null,"abstract":"<p><p>MicroRNA122 (miR-122) is a microRNA that is highly expressed in hepatocytes and has been identified as a prospective therapeutic target and biomarker for liver injury. An expanding body of research has demonstrated that miR-122 is a critical regulator in both the initiation and progression of a wide range of liver diseases. Traditional methods for detecting miR-122 mainly include Northern blotting and qRT-PCR, but they are technically complex and cumbersome, requiring expensive instruments and high technical requirements. In this paper, we present a novel rapid testing method utilizing a lateral flow nucleic acid biosensor (LFNAB) for the sensitive and time-efficient detection of miR-122. This approach offers several advantages, including a high specificity for miR-122, the ability to detect low concentrations of the target molecule, and a significantly reduced testing time compared to conventional detection methods. In this study, a thiol-modified single-stranded detection DNA probe (Det-DNA), a biotinylated single-stranded capture DNA probe (Cap-DNA), and a biotinylated single-stranded control DNA probe (Con-DNA) are used to construct the LFNAB. A gold nanoparticle (AuNP) is a colored tag, which is used to label the Det-DNA probe. The principle of detecting miR-122 is based on dual DNA-miRNA hybridization reactions on the LFNAB to form sandwich-type AuNP-Det-DNA-miR-122-Cap-DNA complexes, which are captured on the test area of LFNAB for visualization and quantification. After systematic optimization of conditions of experiment, the response of LFNAB was highly linear within the scope of 0 pM-100 pM miR-122, and the detection limit in 15 min was 3.90 pM. The use of LFNAB to detect miR-122 in serum and fingertip blood has yielded satisfactory results. This successful application indicates the effectiveness of LFNAB in detecting miR-122 in both serum and fingertip blood samples, showcasing its potential utility in clinical and research settings for assessing miR-122 levels in different biological samples.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luiz Ricardo Guterres Silva, Carlos Eduardo Costa Lopes, Auro Atsushi Tanaka, Luiza Maria Ferreira Dantas, Iranaldo Santos Silva, Jéssica Santos Stefano
The technology of 3D printing, particularly fused deposition modeling (FDM) 3D printing, has revolutionized the development of electrochemical biosensors, offering a versatile and cost-effective approach for clinical applications. This review explores the integration of FDM in fabricating biosensing platforms tailored for clinical diagnostics, emphasizing its role in detecting various biomarkers and viral pathogens. Advances in 3D printing materials, especially the emergence of bespoke conductive filaments, have allowed the production of highly customizable and efficient biosensors. A detailed discussion focuses on the design and application of these biosensors for viral detection, highlighting their potential to improve diagnostic accuracy. Furthermore, the review addresses current trends, including the push towards miniaturization and multianalyte detection, alongside challenges such as material optimization and regulatory hurdles. By providing a comprehensive overview, this work underscores the transformative impact of 3D-printed electrochemical biosensors in clinical diagnostics while also identifying critical areas for future research and development.
{"title":"Electrochemical Biosensors 3D Printed by Fused Deposition Modeling: Actualities, Trends, and Challenges.","authors":"Luiz Ricardo Guterres Silva, Carlos Eduardo Costa Lopes, Auro Atsushi Tanaka, Luiza Maria Ferreira Dantas, Iranaldo Santos Silva, Jéssica Santos Stefano","doi":"10.3390/bios15010057","DOIUrl":"10.3390/bios15010057","url":null,"abstract":"<p><p>The technology of 3D printing, particularly fused deposition modeling (FDM) 3D printing, has revolutionized the development of electrochemical biosensors, offering a versatile and cost-effective approach for clinical applications. This review explores the integration of FDM in fabricating biosensing platforms tailored for clinical diagnostics, emphasizing its role in detecting various biomarkers and viral pathogens. Advances in 3D printing materials, especially the emergence of bespoke conductive filaments, have allowed the production of highly customizable and efficient biosensors. A detailed discussion focuses on the design and application of these biosensors for viral detection, highlighting their potential to improve diagnostic accuracy. Furthermore, the review addresses current trends, including the push towards miniaturization and multianalyte detection, alongside challenges such as material optimization and regulatory hurdles. By providing a comprehensive overview, this work underscores the transformative impact of 3D-printed electrochemical biosensors in clinical diagnostics while also identifying critical areas for future research and development.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izabela Zaras, Olga Kujawa, Marcin Olszewski, Marta Jarczewska
Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose. Herein, we present studies on the electrochemical detection of lead ions using PS2M aptamer, which contains several guanine nucleotides, as the receptor element. Firstly, the method of aptamer-based layer fabrication was optimized along with the choice of a redox active indicator, which was a source of current signal. The experiments revealed the possibility of lead ion detection from 50 to 600 nM, which covers the range below and above the maximum accepted limit stated by US EPA (72 nM). Moreover, the sensing layer exhibited high selectivity towards lead ions and was successfully applied both for the analysis of tap water spiked with Pb2+ ions and as a miniaturized sensor. Finally, stability and regeneration studies on the aptamer-based receptor layer were executed to confirm the utility of the elaborated tool.
{"title":"Application of PS2M Aptamer as Receptor Layer for Electrochemical Detection of Lead Ions.","authors":"Izabela Zaras, Olga Kujawa, Marcin Olszewski, Marta Jarczewska","doi":"10.3390/bios15010059","DOIUrl":"10.3390/bios15010059","url":null,"abstract":"<p><p>Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose. Herein, we present studies on the electrochemical detection of lead ions using PS2M aptamer, which contains several guanine nucleotides, as the receptor element. Firstly, the method of aptamer-based layer fabrication was optimized along with the choice of a redox active indicator, which was a source of current signal. The experiments revealed the possibility of lead ion detection from 50 to 600 nM, which covers the range below and above the maximum accepted limit stated by US EPA (72 nM). Moreover, the sensing layer exhibited high selectivity towards lead ions and was successfully applied both for the analysis of tap water spiked with Pb<sup>2+</sup> ions and as a miniaturized sensor. Finally, stability and regeneration studies on the aptamer-based receptor layer were executed to confirm the utility of the elaborated tool.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Zahra Dourandish
In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine. To evaluate the electrochemical response of the MWCNTs/ZnO/SPCE towards doxorubicin, cyclic voltammetry (CV) was applied. The MWCNTs/ZnO nanocomposite showed a significant synergistic effect on the electrochemical response of the electrode for the redox reaction of doxorubicin. Also, the MWCNTs/ZnO/SPCE demonstrated an enhanced sensing platform for the quantification of doxorubicin, obtaining a detection limit (LOD) of 0.002 µM and a sensitivity of 0.0897 µA/µM, as determined by differential pulse voltammetry (DPV) within a linear range from 0.007 to 150.0 µM. Also, the MWCNTs/ZnO nanocomposite-modified SPCE showed high electrochemical activities towards the oxidation of doxorubicin and dacarbazine with peak-potential separation of 345 mV, which is sufficient for doxorubicin determination in the presence of dacarbazine. Also, the MWCNTs/ZnO nanocomposite-modified SPCE presented reproducible and stable responses to determine doxorubicin. Finally, the developed platform demonstrated a successful performance for doxorubicin and dacarbazine determination in real samples, with recovery in the range of 97.1% to 104.0% and relative standard deviation (RSD) from 1.8% to 3.5%.
{"title":"Electrochemical Determination of Doxorubicin in the Presence of Dacarbazine Using MWCNTs/ZnO Nanocomposite Modified Disposable Screen-Printed Electrode.","authors":"Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Zahra Dourandish","doi":"10.3390/bios15010060","DOIUrl":"10.3390/bios15010060","url":null,"abstract":"<p><p>In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine. To evaluate the electrochemical response of the MWCNTs/ZnO/SPCE towards doxorubicin, cyclic voltammetry (CV) was applied. The MWCNTs/ZnO nanocomposite showed a significant synergistic effect on the electrochemical response of the electrode for the redox reaction of doxorubicin. Also, the MWCNTs/ZnO/SPCE demonstrated an enhanced sensing platform for the quantification of doxorubicin, obtaining a detection limit (LOD) of 0.002 µM and a sensitivity of 0.0897 µA/µM, as determined by differential pulse voltammetry (DPV) within a linear range from 0.007 to 150.0 µM. Also, the MWCNTs/ZnO nanocomposite-modified SPCE showed high electrochemical activities towards the oxidation of doxorubicin and dacarbazine with peak-potential separation of 345 mV, which is sufficient for doxorubicin determination in the presence of dacarbazine. Also, the MWCNTs/ZnO nanocomposite-modified SPCE presented reproducible and stable responses to determine doxorubicin. Finally, the developed platform demonstrated a successful performance for doxorubicin and dacarbazine determination in real samples, with recovery in the range of 97.1% to 104.0% and relative standard deviation (RSD) from 1.8% to 3.5%.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Astolfi, Giulia Zonta, Cesare Malagù, Gabriele Anania, Giorgio Rispoli
Colorectal cancer represents 10% of all the annual tumors diagnosed worldwide, being often not timely diagnosed, because its symptoms are typically lacking or very mild. Therefore, it is crucial to develop and validate innovative low-invasive techniques to detect it before becoming intractable. To this aim, a device equipped with nanostructured gas sensors has been employed to detect the airborne molecules of blood samples collected from healthy subjects, and from colorectal cancer affected patients at different stages of their pre- and post-surgery therapeutic path. Data was scrutinized by using statistical standard techniques to highlight their statistical differences, and through principal component analysis and support vector machine to classify them. The device was able to readily distinguish between the pre-surgery blood samples (i.e., taken when the patient had cancer), and the ones up to three years post-surgery (i.e., following the tumor removal) or the ones from healthy subjects. Finally, the correlation of the sensor responses with the patient/healthy subject's gender was investigated, resulting negligible. These results pave the path toward a clinical validation of this device to monitor the patient's health status by detecting possible relapses, to parallel to clinical follow-up protocols.
{"title":"MOX Nanosensors to Detect Colorectal Cancer Relapses from Patient's Blood at Three Years Follow-Up, and Gender Correlation.","authors":"Michele Astolfi, Giulia Zonta, Cesare Malagù, Gabriele Anania, Giorgio Rispoli","doi":"10.3390/bios15010056","DOIUrl":"10.3390/bios15010056","url":null,"abstract":"<p><p>Colorectal cancer represents 10% of all the annual tumors diagnosed worldwide, being often not timely diagnosed, because its symptoms are typically lacking or very mild. Therefore, it is crucial to develop and validate innovative low-invasive techniques to detect it before becoming intractable. To this aim, a device equipped with nanostructured gas sensors has been employed to detect the airborne molecules of blood samples collected from healthy subjects, and from colorectal cancer affected patients at different stages of their pre- and post-surgery therapeutic path. Data was scrutinized by using statistical standard techniques to highlight their statistical differences, and through principal component analysis and support vector machine to classify them. The device was able to readily distinguish between the pre-surgery blood samples (i.e., taken when the patient had cancer), and the ones up to three years post-surgery (i.e., following the tumor removal) or the ones from healthy subjects. Finally, the correlation of the sensor responses with the patient/healthy subject's gender was investigated, resulting negligible. These results pave the path toward a clinical validation of this device to monitor the patient's health status by detecting possible relapses, to parallel to clinical follow-up protocols.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kwanghee Yoo, Hye-Seong Cho, Jaehi Kim, Minsup Shin, Jun-Sik Chu, Sohyeon Jang, Han-Joo Bae, Heung Su Jung, Homan Kang, Bong-Hyun Jun
Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO2@QD@SiO2 (QD2) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO2) core and surrounded by an outer SiO2 shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD2@PEG@Aptamer, an aptamer conjugated with QD2 using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA. For LFIA optimization, we determined the optimal conditions as a 1.0:2.0 × 10-2 ratio of polyethylene glycol (PEG) to aptamer by adjusting the amounts of PEG and aptamer, phosphate-buffered saline containing 0.5% Tween® 20 as a developing solution, and 0.15 μg NPs by setting the NP weight during development. Under these conditions, QD2@PEG@Aptamer selectively detected CA19-9, achieving a detection limit of 1.74 × 10-2 mg·mL-1. Moreover, FI remained stable for 10 days after detection. These results highlight the potential of QD2 and aptamer conjugation technology as a reliable and versatile sensing platform for various diagnostic applications.
{"title":"Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.","authors":"Kwanghee Yoo, Hye-Seong Cho, Jaehi Kim, Minsup Shin, Jun-Sik Chu, Sohyeon Jang, Han-Joo Bae, Heung Su Jung, Homan Kang, Bong-Hyun Jun","doi":"10.3390/bios15010054","DOIUrl":"10.3390/bios15010054","url":null,"abstract":"<p><p>Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO<sub>2</sub>@QD@SiO<sub>2</sub> (QD<sup>2</sup>) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO<sub>2</sub>) core and surrounded by an outer SiO<sub>2</sub> shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD<sup>2</sup>@PEG@Aptamer, an aptamer conjugated with QD<sup>2</sup> using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA. For LFIA optimization, we determined the optimal conditions as a 1.0:2.0 × 10<sup>-2</sup> ratio of polyethylene glycol (PEG) to aptamer by adjusting the amounts of PEG and aptamer, phosphate-buffered saline containing 0.5% Tween<sup>®</sup> 20 as a developing solution, and 0.15 μg NPs by setting the NP weight during development. Under these conditions, QD<sup>2</sup>@PEG@Aptamer selectively detected CA19-9, achieving a detection limit of 1.74 × 10<sup>-2</sup> mg·mL<sup>-1</sup>. Moreover, FI remained stable for 10 days after detection. These results highlight the potential of QD<sup>2</sup> and aptamer conjugation technology as a reliable and versatile sensing platform for various diagnostic applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}