Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-07-19 DOI:10.3390/bios14070352
Mason L Perillo, Bhavna Gupta, James R Siegenthaler, Isabelle E Christensen, Brandon Kepros, Abu Mitul, Ming Han, Robert Rechenberg, Michael F Becker, Wen Li, Erin K Purcell
{"title":"Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry.","authors":"Mason L Perillo, Bhavna Gupta, James R Siegenthaler, Isabelle E Christensen, Brandon Kepros, Abu Mitul, Ming Han, Robert Rechenberg, Michael F Becker, Wen Li, Erin K Purcell","doi":"10.3390/bios14070352","DOIUrl":null,"url":null,"abstract":"<p><p>Fast-scan cyclic voltammetry (FSCV) is an electrochemical sensing technique that can be used for neurochemical sensing with high spatiotemporal resolution. Carbon fiber microelectrodes (CFMEs) are traditionally used as FSCV sensors. However, CFMEs are prone to electrochemical fouling caused by oxidative byproducts of repeated serotonin (5-HT) exposure, which makes them less suitable as chronic 5-HT sensors. Our team is developing a boron-doped diamond microelectrode (BDDME) that has previously been shown to be relatively resistant to fouling caused by protein adsorption (biofouling). We sought to determine if this BDDME exhibits resistance to electrochemical fouling, which we explored on electrodes fabricated with either femtosecond laser cutting or physical cleaving. We recorded the oxidation current response after 25 repeated injections of 5-HT in a flow-injection cell and compared the current drop from the first with the last injection. The 5-HT responses were compared with dopamine (DA), a neurochemical that is known to produce minimal fouling oxidative byproducts and has a stable repeated response. Physical cleaving of the BDDME yielded a reduction in fouling due to 5-HT compared with the CFME and the femtosecond laser cut BDDME. However, the femtosecond laser cut BDDME exhibited a large increase in sensitivity over the cleaved BDDME. An extended stability analysis was conducted for all device types following 5-HT fouling tests. This analysis demonstrated an improvement in the long-term stability of boron-doped diamond over CFMEs, as well as a diminishing sensitivity of the laser-cut BDDME over time. This work reports the electrochemical fouling performance of the BDDME when it is repeatedly exposed to DA or 5-HT, which informs the development of a chronic, diamond-based electrochemical sensor for long-term neurotransmitter measurements in vivo.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14070352","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fast-scan cyclic voltammetry (FSCV) is an electrochemical sensing technique that can be used for neurochemical sensing with high spatiotemporal resolution. Carbon fiber microelectrodes (CFMEs) are traditionally used as FSCV sensors. However, CFMEs are prone to electrochemical fouling caused by oxidative byproducts of repeated serotonin (5-HT) exposure, which makes them less suitable as chronic 5-HT sensors. Our team is developing a boron-doped diamond microelectrode (BDDME) that has previously been shown to be relatively resistant to fouling caused by protein adsorption (biofouling). We sought to determine if this BDDME exhibits resistance to electrochemical fouling, which we explored on electrodes fabricated with either femtosecond laser cutting or physical cleaving. We recorded the oxidation current response after 25 repeated injections of 5-HT in a flow-injection cell and compared the current drop from the first with the last injection. The 5-HT responses were compared with dopamine (DA), a neurochemical that is known to produce minimal fouling oxidative byproducts and has a stable repeated response. Physical cleaving of the BDDME yielded a reduction in fouling due to 5-HT compared with the CFME and the femtosecond laser cut BDDME. However, the femtosecond laser cut BDDME exhibited a large increase in sensitivity over the cleaved BDDME. An extended stability analysis was conducted for all device types following 5-HT fouling tests. This analysis demonstrated an improvement in the long-term stability of boron-doped diamond over CFMEs, as well as a diminishing sensitivity of the laser-cut BDDME over time. This work reports the electrochemical fouling performance of the BDDME when it is repeatedly exposed to DA or 5-HT, which informs the development of a chronic, diamond-based electrochemical sensor for long-term neurotransmitter measurements in vivo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用快速扫描循环伏安法评估掺硼金刚石微电极的体外羟色胺诱导电化学堵塞性能
快速扫描循环伏安法(FSCV)是一种电化学传感技术,可用于高时空分辨率的神经化学传感。碳纤维微电极(CFME)是传统的 FSCV 传感器。然而,碳纤维微电极容易因反复暴露于羟色胺(5-HT)的氧化副产物而产生电化学污垢,因此不太适合用作慢性 5-HT 传感器。我们的团队正在开发一种掺硼金刚石微电极(BDDME),这种微电极以前曾被证明对蛋白质吸附造成的污垢(生物污垢)具有较强的抗性。我们试图确定这种掺硼金刚石微电极(BDDME)是否具有抗电化学污垢的能力。我们记录了在流动注射池中重复注射 25 次 5-HT 后的氧化电流响应,并比较了第一次和最后一次注射的电流下降情况。我们将 5-HT 的反应与多巴胺(DA)进行了比较,众所周知,多巴胺是一种神经化学物质,它产生的污垢氧化副产物极少,而且具有稳定的重复反应。与 CFME 和飞秒激光切割 BDDME 相比,物理裂解 BDDME 可减少 5-HT 造成的污垢。不过,飞秒激光切割 BDDME 比裂解 BDDME 的灵敏度提高了很多。在进行 5-HT 污垢测试后,对所有类型的设备进行了扩展稳定性分析。该分析表明,掺硼金刚石的长期稳定性比 CFMEs 有所提高,激光切割 BDDME 的灵敏度也随着时间的推移而降低。这项工作报告了 BDDME 在反复暴露于 DA 或 5-HT 时的电化学堵塞性能,为开发用于体内长期神经递质测量的基于金刚石的慢性电化学传感器提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
MLS-Net: An Automatic Sleep Stage Classifier Utilizing Multimodal Physiological Signals in Mice. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. Ultrasoft Long-Lasting Reusable Hydrogel-Based Sensor Patch for Biosignal Recording. A Bacteriophage Protein-Based Impedimetric Electrochemical Biosensor for the Detection of Campylobacter jejuni. Applying a Fluorescence Polarization Assay for Detection of Brucellosis in Animals Using the Fluorescently Labeled Synthetic Oligosaccharides as Biosensing Tracer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1