{"title":"Ground Urban Heat Island: Strengthening the Connection Between Spaceborne Thermal Observations and Urban Heat Risk Management","authors":"Leiqiu Hu, Christopher Uejio","doi":"10.1029/2024GH001114","DOIUrl":null,"url":null,"abstract":"<p>As urbanization progresses under a changing climate, urban populations face increasing threats from chronically higher heat exposures and more frequent extreme heat events. Understanding the complex urban thermal exposure patterns becomes crucial for effective heat risk management. The spatial advantage of satellite thermal observations positions surface urban heat islands (SUHI) as a primary measure for such applications at the city scale. However, satellite-inherent biases pose considerable uncertainties. To improve the representation of human-relevant heat exposure, this study proposes a simple but effective satellite-based measure– ground urban heat island (GUHI), focusing solely on radiant temperatures from urban ground elements. Leveraging ECOSTRESS land surface temperature product and radiation-based statistical downscaling, diurnally representative GUHIs were evaluated over NYC. The findings reveal that overall GUHI is consistently warmer than SUHI diurnally. However, GUHI exhibits complex spatial contrasts with SUHI, primarily influenced by vegetation coverage. Various indicators associated with urban structures and materials were examined, showing important but dissimilar roles in shaping the spatial dynamics of GUHI and SUHI. This study highlights the value of satellite thermal observations compared to air temperature while addressing uncertainties in widely adopted practices of using them. By improving the depiction of human-related urban heat patterns from Earth observations, this research offers valuable insight and more reliable measures to address the urgent requirements for urban heat risk management globally.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GH001114","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As urbanization progresses under a changing climate, urban populations face increasing threats from chronically higher heat exposures and more frequent extreme heat events. Understanding the complex urban thermal exposure patterns becomes crucial for effective heat risk management. The spatial advantage of satellite thermal observations positions surface urban heat islands (SUHI) as a primary measure for such applications at the city scale. However, satellite-inherent biases pose considerable uncertainties. To improve the representation of human-relevant heat exposure, this study proposes a simple but effective satellite-based measure– ground urban heat island (GUHI), focusing solely on radiant temperatures from urban ground elements. Leveraging ECOSTRESS land surface temperature product and radiation-based statistical downscaling, diurnally representative GUHIs were evaluated over NYC. The findings reveal that overall GUHI is consistently warmer than SUHI diurnally. However, GUHI exhibits complex spatial contrasts with SUHI, primarily influenced by vegetation coverage. Various indicators associated with urban structures and materials were examined, showing important but dissimilar roles in shaping the spatial dynamics of GUHI and SUHI. This study highlights the value of satellite thermal observations compared to air temperature while addressing uncertainties in widely adopted practices of using them. By improving the depiction of human-related urban heat patterns from Earth observations, this research offers valuable insight and more reliable measures to address the urgent requirements for urban heat risk management globally.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.