Sox21 homeologs autoregulate expression levels to control progression through neurogenesis

IF 2.4 4区 生物学 Q2 DEVELOPMENTAL BIOLOGY genesis Pub Date : 2024-07-26 DOI:10.1002/dvg.23612
Dillon L. Damuth, Doreen D. Cunningham, Elena M. Silva
{"title":"Sox21 homeologs autoregulate expression levels to control progression through neurogenesis","authors":"Dillon L. Damuth,&nbsp;Doreen D. Cunningham,&nbsp;Elena M. Silva","doi":"10.1002/dvg.23612","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The SRY HMG box transcription factor Sox21 plays multiple critical roles in neurogenesis, with its function dependent on concentration and developmental stage. In the allotetraploid <i>Xenopus laevis</i>, there are two homeologs of <i>sox21</i>, namely <i>sox21.S</i> and <i>sox21.L</i>. Previous studies focused on Sox21.S, but its amino acid sequence is divergent, lacking conserved poly-A stretches and bearing more similarity with ancestral homologs. In contrast, Sox21.L shares higher sequence similarity with mouse and chick Sox21. To determine if Sox21.S and Sox21.L have distinct functions, we conducted gain and loss-of-function studies in <i>Xenopus</i> embryos. Our studies revealed that Sox21.S and Sox21.L are functionally redundant, but Sox21.L is more effective at driving changes than Sox21.S. These results also support our earlier findings in ectodermal explants, demonstrating that Sox21 function is dose-dependent. While Sox21 is necessary for primary neuron formation, high levels prevent their formation. Strikingly, these proteins autoregulate, with high levels of Sox21.L reducing <i>sox21.S</i> and <i>sox21.L</i> mRNA levels, and decreased Sox21.S promoting increased expression of <i>sox21.L</i>. Our findings shed light on the intricate concentration-dependent roles of Sox21 homeologs in <i>Xenopus</i> neurogenesis.</p>\n </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23612","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The SRY HMG box transcription factor Sox21 plays multiple critical roles in neurogenesis, with its function dependent on concentration and developmental stage. In the allotetraploid Xenopus laevis, there are two homeologs of sox21, namely sox21.S and sox21.L. Previous studies focused on Sox21.S, but its amino acid sequence is divergent, lacking conserved poly-A stretches and bearing more similarity with ancestral homologs. In contrast, Sox21.L shares higher sequence similarity with mouse and chick Sox21. To determine if Sox21.S and Sox21.L have distinct functions, we conducted gain and loss-of-function studies in Xenopus embryos. Our studies revealed that Sox21.S and Sox21.L are functionally redundant, but Sox21.L is more effective at driving changes than Sox21.S. These results also support our earlier findings in ectodermal explants, demonstrating that Sox21 function is dose-dependent. While Sox21 is necessary for primary neuron formation, high levels prevent their formation. Strikingly, these proteins autoregulate, with high levels of Sox21.L reducing sox21.S and sox21.L mRNA levels, and decreased Sox21.S promoting increased expression of sox21.L. Our findings shed light on the intricate concentration-dependent roles of Sox21 homeologs in Xenopus neurogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sox21同源物通过自动调节表达水平来控制神经发生的进展。
SRY HMG 盒转录因子 Sox21 在神经发生过程中发挥着多种关键作用,其功能取决于浓度和发育阶段。之前的研究主要集中在 Sox21.S,但其氨基酸序列存在差异,缺乏保守的多 A 链,与祖先同源物的相似性更高。相比之下,Sox21.L 与小鼠和小鸡 Sox21 的序列相似度较高。为了确定 Sox21.S 和 Sox21.L 是否具有不同的功能,我们在爪蟾胚胎中进行了功能增益和功能缺失研究。我们的研究发现,Sox21.S和Sox21.L在功能上是多余的,但Sox21.L比Sox21.S在驱动变化方面更有效。这些结果也支持了我们早些时候在外胚层外植体中的发现,证明了Sox21的功能是剂量依赖性的。虽然 Sox21 是初级神经元形成所必需的,但高水平的 Sox21 会阻碍初级神经元的形成。我们的发现揭示了 Sox21 同源物在爪蟾神经发生过程中复杂的浓度依赖性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
genesis
genesis 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
40
审稿时长
6-12 weeks
期刊介绍: As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders. genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.
期刊最新文献
Expression and Transcriptional Targets of TGFβ-RII in Paracentrotus lividus Larval Skeletogenesis Generation of an Armcx1 Conditional Knockout Mouse Sox21 homeologs autoregulate expression levels to control progression through neurogenesis Two decades on: Special issue on olfaction celebrating Axel and Buck's Nobel Prize Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1