{"title":"Autologous serum protein stabilized silver quantum clusters as host-specific antibacterial agents.","authors":"Kritika Sood, Asifkhan Shanavas","doi":"10.1080/17435889.2024.2374231","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To synthesize host-specific serum protein stabilized silver quantum clusters and assess their preclinical safety as potential antibacterial agents.<b>Materials & methods:</b> Ag-QC-NanoSera (Ag-QCNS) were synthesized using bovine, human and murine sera. Antibacterial efficacy was evaluated against <i>E. coli</i> (including antibiotic-resistant strain), <i>S. aureus</i> and <i>P. aeruginosa</i>. Biocompatibility, hemocompatibility and antibacterial mechanism were also investigated. Preclinical safety and biodistribution of autologous Ag-QCNS were assessed in BALB/c mice over 28 days.<b>Results:</b> Ag-QCNS showed high biocompatibility, hemocompatibility and high antibacterial activity at ∼12.72 μg/ml Ag equivalent. Intracellular ROS and bacterial membrane damage were confirmed as antibacterial mechanism. Ag-QCNS were established as preclinically safe.<b>Conclusion:</b> Ag-QCNS demonstrate potential as next-generation host-specific nanotheranostic antibacterial agents, enhancing the safety and efficacy while combating antibiotic resistance.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2024.2374231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To synthesize host-specific serum protein stabilized silver quantum clusters and assess their preclinical safety as potential antibacterial agents.Materials & methods: Ag-QC-NanoSera (Ag-QCNS) were synthesized using bovine, human and murine sera. Antibacterial efficacy was evaluated against E. coli (including antibiotic-resistant strain), S. aureus and P. aeruginosa. Biocompatibility, hemocompatibility and antibacterial mechanism were also investigated. Preclinical safety and biodistribution of autologous Ag-QCNS were assessed in BALB/c mice over 28 days.Results: Ag-QCNS showed high biocompatibility, hemocompatibility and high antibacterial activity at ∼12.72 μg/ml Ag equivalent. Intracellular ROS and bacterial membrane damage were confirmed as antibacterial mechanism. Ag-QCNS were established as preclinically safe.Conclusion: Ag-QCNS demonstrate potential as next-generation host-specific nanotheranostic antibacterial agents, enhancing the safety and efficacy while combating antibiotic resistance.