Debojyoti Chakraborty, Albert Ciceu, Dalibor Ballian, Marta Benito Garzón, Andreas Bolte, Gregor Bozic, Rafael Buchacher, Jaroslav Čepl, Eva Cremer, Alexis Ducousso, Julian Gaviria, Jan Peter George, André Hardtke, Mladen Ivankovic, Marcin Klisz, Jan Kowalczyk, Antoine Kremer, Milan Lstibůrek, Roman Longauer, Georgeta Mihai, László Nagy, Krasimira Petkova, Emil Popov, Randolf Schirmer, Tore Skrøppa, Thomas Mørtvedt Solvin, Arne Steffenrem, Jan Stejskal, Srdjan Stojnic, Katharina Volmer, Silvio Schueler
{"title":"Assisted tree migration can preserve the European forest carbon sink under climate change","authors":"Debojyoti Chakraborty, Albert Ciceu, Dalibor Ballian, Marta Benito Garzón, Andreas Bolte, Gregor Bozic, Rafael Buchacher, Jaroslav Čepl, Eva Cremer, Alexis Ducousso, Julian Gaviria, Jan Peter George, André Hardtke, Mladen Ivankovic, Marcin Klisz, Jan Kowalczyk, Antoine Kremer, Milan Lstibůrek, Roman Longauer, Georgeta Mihai, László Nagy, Krasimira Petkova, Emil Popov, Randolf Schirmer, Tore Skrøppa, Thomas Mørtvedt Solvin, Arne Steffenrem, Jan Stejskal, Srdjan Stojnic, Katharina Volmer, Silvio Schueler","doi":"10.1038/s41558-024-02080-5","DOIUrl":null,"url":null,"abstract":"Climate change threatens the role of European forests as a long-term carbon sink. Assisted migration aims to increase the resilience of forest tree populations to climate change, using species-specific climatic limits and local adaptations through transferring seed provenances. We modelled assisted migration scenarios for seven main European tree species and analysed the effects of species and seed provenance selection, accounting for environmental and genetic variations, on the annual above-ground carbon sink of regrowing juvenile forests. To increase forest resilience, coniferous trees need to be replaced by deciduous species over large parts of their distribution. If local seed provenances are used, this would result in a decrease of the current carbon sink (40 TgC yr−1) by 34–41% by 2061–2080. However, if seed provenances adapted to future climates are used, current sinks could be maintained or even increased to 48–60 TgC yr−1. Assisted migration is the artificial movement of species and populations to increase forest resilience. Here the authors model how targeted assisted migration can preserve or enhance the European forest carbon sink under future climate scenarios.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 8","pages":"845-852"},"PeriodicalIF":29.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02080-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02080-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change threatens the role of European forests as a long-term carbon sink. Assisted migration aims to increase the resilience of forest tree populations to climate change, using species-specific climatic limits and local adaptations through transferring seed provenances. We modelled assisted migration scenarios for seven main European tree species and analysed the effects of species and seed provenance selection, accounting for environmental and genetic variations, on the annual above-ground carbon sink of regrowing juvenile forests. To increase forest resilience, coniferous trees need to be replaced by deciduous species over large parts of their distribution. If local seed provenances are used, this would result in a decrease of the current carbon sink (40 TgC yr−1) by 34–41% by 2061–2080. However, if seed provenances adapted to future climates are used, current sinks could be maintained or even increased to 48–60 TgC yr−1. Assisted migration is the artificial movement of species and populations to increase forest resilience. Here the authors model how targeted assisted migration can preserve or enhance the European forest carbon sink under future climate scenarios.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.