Diagrammatic perturbation approach to moiré bands in twisted bilayer graphene

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-07-26 DOI:10.1103/physrevb.110.045442
Federico Escudero
{"title":"Diagrammatic perturbation approach to moiré bands in twisted bilayer graphene","authors":"Federico Escudero","doi":"10.1103/physrevb.110.045442","DOIUrl":null,"url":null,"abstract":"We develop a diagrammatic perturbation theory to account for the emergence of moiré bands in the continuum model of twisted bilayer graphene. Our framework is build on treating the moiré potential as a perturbation that transfers electrons from one layer to another through the exchange of the three wave vectors that define the moiré Brillouin zone. By working in the two-band basis of each monolayer, we analyze the one-particle Green's function and introduce a diagrammatic representation for the scattering processes. We then identify the moiré-induced self-energy, relate it to the quasiparticle weight and velocity of the moiré bands, and show how it can be obtained by summing irreducible diagrams. We also connect the emergence of flat bands to the behavior of the static self-energy at the magic angle. In particular, we show that a vanishing Dirac velocity is a direct consequence of the relative orientation of the momentum transfer vectors, suggesting that the origin of magic angles in twisted bilayer graphene is intrinsically connected to its geometrical properties. Our approach provides a diagrammatic framework that highlights the physical properties of the moiré bands.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.045442","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a diagrammatic perturbation theory to account for the emergence of moiré bands in the continuum model of twisted bilayer graphene. Our framework is build on treating the moiré potential as a perturbation that transfers electrons from one layer to another through the exchange of the three wave vectors that define the moiré Brillouin zone. By working in the two-band basis of each monolayer, we analyze the one-particle Green's function and introduce a diagrammatic representation for the scattering processes. We then identify the moiré-induced self-energy, relate it to the quasiparticle weight and velocity of the moiré bands, and show how it can be obtained by summing irreducible diagrams. We also connect the emergence of flat bands to the behavior of the static self-energy at the magic angle. In particular, we show that a vanishing Dirac velocity is a direct consequence of the relative orientation of the momentum transfer vectors, suggesting that the origin of magic angles in twisted bilayer graphene is intrinsically connected to its geometrical properties. Our approach provides a diagrammatic framework that highlights the physical properties of the moiré bands.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扭曲双层石墨烯摩尔纹带的图解扰动法
我们开发了一种图解扰动理论,用于解释扭曲双层石墨烯连续模型中出现的摩尔带。我们的框架将摩尔势视为一种扰动,通过定义摩尔布里渊区的三个波矢量的交换将电子从一层转移到另一层。通过在每个单层的双波段基础上工作,我们分析了单粒子格林函数,并为散射过程引入了图解表示法。然后,我们确定了摩尔纹诱导的自能,将其与摩尔纹带的准粒子重量和速度联系起来,并展示了如何通过对不可还原图求和来获得自能。我们还将平带的出现与魔幻角的静态自能行为联系起来。特别是,我们证明了消失的狄拉克速度是动量传递矢量相对方向的直接结果,这表明扭曲双层石墨烯中魔幻角的起源与其几何特性有着内在联系。我们的方法提供了一个图解框架,突出了摩尔纹带的物理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Disordered Landau levels of single-cone massless Dirac fermions with broken particle-hole symmetry Locality, correlations, information, and non-Hermitian quantum systems Insights into the bonding properties and magnetism of the Mn-B system with a physically constrained neural network functional Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides Uncovering gauge-dependent critical order-parameter correlations by a stochastic gauge fixing at O(N)* and Ising* continuous transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1