A more quiescent deep ocean under global warming

IF 29.6 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Nature Climate Change Pub Date : 2024-07-26 DOI:10.1038/s41558-024-02075-2
Shengpeng Wang, Zhao Jing, Lixin Wu, Shantong Sun, Zhaohui Chen, Xiaohui Ma, Bolan Gan
{"title":"A more quiescent deep ocean under global warming","authors":"Shengpeng Wang, Zhao Jing, Lixin Wu, Shantong Sun, Zhaohui Chen, Xiaohui Ma, Bolan Gan","doi":"10.1038/s41558-024-02075-2","DOIUrl":null,"url":null,"abstract":"The ocean is a magnificent reservoir of kinetic energy possessed by currents at diverse spatio-temporal scales. These currents transport heat and material, regulating the regional and global climate. It is generally thought that large-scale ocean circulations should become more energetic under global warming, especially in the ocean’s upper layer. However, using high-resolution global climate simulations, here we demonstrate that the total ocean kinetic energy is projected to be significantly reduced in a warming climate, despite overall acceleration of large-scale ocean circulations in the upper layer. This reduction is primarily attributed to weakened ocean mesoscale eddies in the deep ocean. Enhanced vertical stratification under global warming reduces the available potential energy stored in large-scale ocean circulations, diminishing its conversion into eddy kinetic energy. Our findings reveal a more quiescent deep ocean under global warming and suggest a crucial role of mesoscale eddies in determining the anthropogenic change of total ocean kinetic energy. Studies show climate change will alter the ocean, with increased surface layer kinetic energy. This work, using full ocean depth and high-resolution projections with a high-emission scenario, shows an overall ocean kinetic energy decrease due to a calmer deep ocean with weaker mesoscale eddies.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 9","pages":"961-967"},"PeriodicalIF":29.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02075-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02075-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The ocean is a magnificent reservoir of kinetic energy possessed by currents at diverse spatio-temporal scales. These currents transport heat and material, regulating the regional and global climate. It is generally thought that large-scale ocean circulations should become more energetic under global warming, especially in the ocean’s upper layer. However, using high-resolution global climate simulations, here we demonstrate that the total ocean kinetic energy is projected to be significantly reduced in a warming climate, despite overall acceleration of large-scale ocean circulations in the upper layer. This reduction is primarily attributed to weakened ocean mesoscale eddies in the deep ocean. Enhanced vertical stratification under global warming reduces the available potential energy stored in large-scale ocean circulations, diminishing its conversion into eddy kinetic energy. Our findings reveal a more quiescent deep ocean under global warming and suggest a crucial role of mesoscale eddies in determining the anthropogenic change of total ocean kinetic energy. Studies show climate change will alter the ocean, with increased surface layer kinetic energy. This work, using full ocean depth and high-resolution projections with a high-emission scenario, shows an overall ocean kinetic energy decrease due to a calmer deep ocean with weaker mesoscale eddies.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球变暖下的深海更加平静
海洋是一个巨大的动能库,由不同时空尺度的洋流所拥有。这些洋流输送热量和物质,调节区域和全球气候。一般认为,在全球变暖的情况下,大尺度海洋环流的能量应该会增加,尤其是在海洋上层。然而,利用高分辨率全球气候模拟,我们在这里证明,尽管大尺度海洋环流在上层总体上加速,但在气候变暖的情况下,海洋总动能预计会显著下降。这种减少主要归因于深海中尺度漩涡的减弱。全球变暖导致垂直分层加剧,从而减少了大尺度海洋环流中储存的可用势能,降低了其转化为涡旋动能的能力。我们的研究结果表明,在全球变暖的情况下,深海更加平静,并表明中尺度漩涡在决定海洋总动能的人为变化方面起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
期刊最新文献
Pathways for urgent action towards climate resilient development Projections of multiple climate-related coastal hazards for the US Southeast Atlantic ‘Arctic Niño’ might emerge in an ice-free world When fire and ice meet Publisher Correction: Internet image search outputs propagate climate change sentiment and impact policy support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1