Atomically precise inorganic helices with a programmable irrational twist

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nature Materials Pub Date : 2024-07-26 DOI:10.1038/s41563-024-01963-4
Dmitri Leo Mesoza Cordova, Kenneth Chua, Tyler A. Kerr, Toshihiro Aoki, David Knez, Grigorii Skorupskii, Diana Lopez, Joseph Ziller, Dmitry A. Fishman, Maxx Q. Arguilla
{"title":"Atomically precise inorganic helices with a programmable irrational twist","authors":"Dmitri Leo Mesoza Cordova, Kenneth Chua, Tyler A. Kerr, Toshihiro Aoki, David Knez, Grigorii Skorupskii, Diana Lopez, Joseph Ziller, Dmitry A. Fishman, Maxx Q. Arguilla","doi":"10.1038/s41563-024-01963-4","DOIUrl":null,"url":null,"abstract":"Helicity in solids often arises from the precise ordering of cooperative intra- and intermolecular interactions unique to natural, organic or molecular systems. This exclusivity limited the realization of helicity and its ensuing properties in dense inorganic solids. Here we report that Ga atoms in GaSeI, a representative III–VI–VII one-dimensional (1D) van der Waals crystal, manifest the rare Boerdijk–Coxeter helix motif. This motif is a non-repeating geometric pattern characterized by 1D face-sharing tetrahedra whose adjacent vertices are rotated by an irrational angle. Using InSeI and GaSeI, we show that the modularity of 1D van der Waals lattices accommodates the systematic twisting of a periodic tetrahelix with a 41 screw axis in InSeI to an infinitely extending Boerdijk–Coxeter helix in GaSeI. GaSeI crystals are non-centrosymmetric, optically active and exfoliable to a single chain. These results present a materials platform towards understanding the origin and physical manifestation of aperiodic helicity in low-dimensional solids. Helical motifs in dense inorganic solids have remained exceedingly scarce. Now a type of 1D van der Waals helical crystal, GaSeI, is presented that manifests the rare quasi-periodic Boerdijk–Coxeter helix motif.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1347-1354"},"PeriodicalIF":37.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01963-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Helicity in solids often arises from the precise ordering of cooperative intra- and intermolecular interactions unique to natural, organic or molecular systems. This exclusivity limited the realization of helicity and its ensuing properties in dense inorganic solids. Here we report that Ga atoms in GaSeI, a representative III–VI–VII one-dimensional (1D) van der Waals crystal, manifest the rare Boerdijk–Coxeter helix motif. This motif is a non-repeating geometric pattern characterized by 1D face-sharing tetrahedra whose adjacent vertices are rotated by an irrational angle. Using InSeI and GaSeI, we show that the modularity of 1D van der Waals lattices accommodates the systematic twisting of a periodic tetrahelix with a 41 screw axis in InSeI to an infinitely extending Boerdijk–Coxeter helix in GaSeI. GaSeI crystals are non-centrosymmetric, optically active and exfoliable to a single chain. These results present a materials platform towards understanding the origin and physical manifestation of aperiodic helicity in low-dimensional solids. Helical motifs in dense inorganic solids have remained exceedingly scarce. Now a type of 1D van der Waals helical crystal, GaSeI, is presented that manifests the rare quasi-periodic Boerdijk–Coxeter helix motif.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可编程无理扭曲的原子精确无机螺旋体
固体中的螺旋性通常产生于自然、有机或分子系统特有的分子内和分子间相互作用的精确排序。这种排他性限制了在致密无机固体中实现螺旋性及其随之而来的特性。在这里,我们报告了具有代表性的 III-VI-VII 一维(1D)范德华晶体 GaSeI 中的镓原子表现出罕见的 Boerdijk-Coxeter 螺旋图案。这种图案是一种非重复的几何图案,其特征是相邻顶点以无理角度旋转的一维共面四面体。通过使用 InSeI 和 GaSeI,我们发现一维范德华晶格的模块性可以将 InSeI 中具有 41 个螺旋轴的周期性四面体系统地扭曲为 GaSeI 中无限延伸的 Boerdijk-Coxeter 螺旋。GaSeI 晶体具有非中心对称性、光学活性和单链可剥离性。这些结果为了解低维固体中非周期螺旋的起源和物理表现提供了一个材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
期刊最新文献
Colloidal quantum dots enable tunable liquid-state lasers Colloidal quantum dots shine in liquid Mechanically constrained into naivety Terra incognita unravelled Electrochemically mutable soft metasurfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1