Asymmetries in Nominally Symmetric Flows

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-07-26 DOI:10.1146/annurev-fluid-030124-045719
Owen J.H. Williams, Alexander J. Smits
{"title":"Asymmetries in Nominally Symmetric Flows","authors":"Owen J.H. Williams, Alexander J. Smits","doi":"10.1146/annurev-fluid-030124-045719","DOIUrl":null,"url":null,"abstract":"Many flows that are expected to be symmetric are actually observed to be asymmetric. The appearance of asymmetry in the face of no particular cause is a widespread although underappreciated occurrence. This rather puzzling and sometimes frustrating phenomenon can occur in wide-angle diffusers, over the forebody of axisymmetric bodies at high angles of attack, in the wake downstream of streamlined as well as bluff bodies, and in the flow over three-dimensional bumps and ramps. We review some notable examples and highlight the extreme sensitivity of many such flows to small disturbances in the body geometry or the incoming flow. Some flows appear to be permanently asymmetric, while others are bistable on timescales that are orders of magnitude longer than any convective timescale. Convective or global instabilities can occur, bistability is common, and mode interactions become important when multiple similar but distinct timescales and length scales are present. Our understanding of these phenomena is still very limited, and further research is urgently required; asymmetries in otherwise symmetric flows can have serious real-world consequences on vehicle control and performance.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-030124-045719","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many flows that are expected to be symmetric are actually observed to be asymmetric. The appearance of asymmetry in the face of no particular cause is a widespread although underappreciated occurrence. This rather puzzling and sometimes frustrating phenomenon can occur in wide-angle diffusers, over the forebody of axisymmetric bodies at high angles of attack, in the wake downstream of streamlined as well as bluff bodies, and in the flow over three-dimensional bumps and ramps. We review some notable examples and highlight the extreme sensitivity of many such flows to small disturbances in the body geometry or the incoming flow. Some flows appear to be permanently asymmetric, while others are bistable on timescales that are orders of magnitude longer than any convective timescale. Convective or global instabilities can occur, bistability is common, and mode interactions become important when multiple similar but distinct timescales and length scales are present. Our understanding of these phenomena is still very limited, and further research is urgently required; asymmetries in otherwise symmetric flows can have serious real-world consequences on vehicle control and performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
名义对称流量中的不对称现象
许多预期对称的水流实际上被观察到是不对称的。在没有特别原因的情况下出现不对称现象是一种普遍现象,但却未得到足够重视。这种相当令人费解、有时甚至令人沮丧的现象可能出现在广角扩散器中、高攻角轴对称体的前体上方、流线型体和崖壁体的下游尾流中,以及三维凸起和斜坡上的流动中。我们回顾了一些著名的例子,并强调了许多此类流动对机体几何形状或流入气流的微小扰动的极端敏感性。有些流动似乎是永久不对称的,而另一些流动在时间尺度上是双稳态的,其时间尺度比任何对流时间尺度都要长几个数量级。对流不稳定性或全局不稳定性可能会发生,双稳态也很常见,当存在多个相似但不同的时间尺度和长度尺度时,模式相互作用变得非常重要。我们对这些现象的了解仍然非常有限,迫切需要进一步的研究;在原本对称的流动中出现不对称现象,会对车辆控制和性能产生严重的实际影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Comparative Life Cycle Toxicity Assessment of Perovskite/Silicon Tandem Photovoltaics Dry-Water-System Confined Fabrication of Nanocuring Catalysts for Superior Low-Cure Powder Coating Design of Loose Nanofiltration Membranes by Tailoring Hydrophilicity and Molecular Mass of Deep Eutectic Solvent Additives: Thermodynamics and Kinetics of Phase Inversion Boosting the Oxygen Evolution Reaction Performance of Inert ZnO by Incorporating Ni and Trace-Level Ir for Scalable and Industrial-Level Water-Splitting Catalysts Generation of Ammonia in a Pulsed Hollow Cathode Discharge Operated in an Ar/H2/N2 Gas Mixture Detected by Fourier Transform Infrared
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1