Reversal of practical resistance in fall armyworm to Cry1F maize: a case report on the resistance to susceptibility in Bt crops from the southeastern USA
Tiago Silva, Gregory A. Sword, Andie Miller, Jawwad A. Qureshi, Graham P. Head, Dawson D. Kerns, Juan Luis Jurat-Fuentes, James Villegas, Tyler B. Towles, Xinzhi Ni, Francis P. F. Reay-Jones, Daniel Carrillo, Donald R. Cook, Chris Daves, Michael J. Stout, Ben Thrash, Silvana V. Paula-Moraes, Shucong Lin, Bhavana Patla, Ying Niu, Caroline I. R. Sakuno, Fangneng Huang
{"title":"Reversal of practical resistance in fall armyworm to Cry1F maize: a case report on the resistance to susceptibility in Bt crops from the southeastern USA","authors":"Tiago Silva, Gregory A. Sword, Andie Miller, Jawwad A. Qureshi, Graham P. Head, Dawson D. Kerns, Juan Luis Jurat-Fuentes, James Villegas, Tyler B. Towles, Xinzhi Ni, Francis P. F. Reay-Jones, Daniel Carrillo, Donald R. Cook, Chris Daves, Michael J. Stout, Ben Thrash, Silvana V. Paula-Moraes, Shucong Lin, Bhavana Patla, Ying Niu, Caroline I. R. Sakuno, Fangneng Huang","doi":"10.1007/s10340-024-01804-y","DOIUrl":null,"url":null,"abstract":"<p>The fall armyworm, <i>Spodoptera frugiperda</i>, is a polyphagous pest in the Americas and a target of Bt crops. A study from 2011-2013 demonstrated practical resistance of <i>S. frugiperda</i> to Cry1F maize in the southeastern coastal region of the U.S. In this study, diet-overlay and leaf tissue bioassays were conducted to determine the susceptibility to four common Bt proteins in maize (Cry1F, Cry1A.105, Cry2Ab2, and Vip3Aa) in 23 <i>S. frugiperda</i> populations collected during 2021-2022 from seven southern U.S. states, including nine populations from the southeastern coastal region. In the diet-overlay bioassays with Cry1F, 22 populations were equally or more susceptible than a susceptible reference, with a single population showing an increased susceptibility ratio (LC<sub>50</sub> of field population/LC<sub>50</sub> of the susceptible strain) of 1.97. Susceptibility ratios of the 23 populations ranged from <0.15 to 4.67 for Cry1A.105 and <0.12 to 5.04 for Vip3Aa. Three populations exhibited an LC<sub>50</sub> >tenfold greater than the susceptible strain to Cry2Ab2. Altogether, the study did not provide evidence of practical resistance in <i>S. frugiperda</i> to the four Bt proteins. Instead, the results show that the recently collected populations were susceptible to Cry1F, Cry1A.105, and Vip3Aa. The Bt susceptibility was consistent across geographical locations and host plants. Results from the leaf tissue assays confirmed the findings of the diet-overlay bioassays. The reversed Cry1F susceptibility in <i>S. frugiperda</i> identified in this study represents the first case of documented practical resistance reverting to susceptible status in Bt crop-insect systems and thus has important implications for resistance management.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01804-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The fall armyworm, Spodoptera frugiperda, is a polyphagous pest in the Americas and a target of Bt crops. A study from 2011-2013 demonstrated practical resistance of S. frugiperda to Cry1F maize in the southeastern coastal region of the U.S. In this study, diet-overlay and leaf tissue bioassays were conducted to determine the susceptibility to four common Bt proteins in maize (Cry1F, Cry1A.105, Cry2Ab2, and Vip3Aa) in 23 S. frugiperda populations collected during 2021-2022 from seven southern U.S. states, including nine populations from the southeastern coastal region. In the diet-overlay bioassays with Cry1F, 22 populations were equally or more susceptible than a susceptible reference, with a single population showing an increased susceptibility ratio (LC50 of field population/LC50 of the susceptible strain) of 1.97. Susceptibility ratios of the 23 populations ranged from <0.15 to 4.67 for Cry1A.105 and <0.12 to 5.04 for Vip3Aa. Three populations exhibited an LC50 >tenfold greater than the susceptible strain to Cry2Ab2. Altogether, the study did not provide evidence of practical resistance in S. frugiperda to the four Bt proteins. Instead, the results show that the recently collected populations were susceptible to Cry1F, Cry1A.105, and Vip3Aa. The Bt susceptibility was consistent across geographical locations and host plants. Results from the leaf tissue assays confirmed the findings of the diet-overlay bioassays. The reversed Cry1F susceptibility in S. frugiperda identified in this study represents the first case of documented practical resistance reverting to susceptible status in Bt crop-insect systems and thus has important implications for resistance management.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.