Effects of deep magmatic degassing and shallow seawater circulation on trace element and sulfur cycling in submarine hydrothermal systems: Insights from the Shijuligou analog, North China

IF 7.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Gondwana Research Pub Date : 2024-07-23 DOI:10.1016/j.gr.2024.07.009
{"title":"Effects of deep magmatic degassing and shallow seawater circulation on trace element and sulfur cycling in submarine hydrothermal systems: Insights from the Shijuligou analog, North China","authors":"","doi":"10.1016/j.gr.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><p>Limited access to modern subseafloor sulfides hampers our understanding of the link between magmatic volatile influx and the cycling of trace elements and sulfur, as well as the effect of the subsequent shallow seawater circulation on these processes. Hence, we studied a well-preserved fossil analog of submarine hydrothermal systems – the Shijuligou volcanogenic massive sulfide (VMS) deposit from the North Qilian Mountains in North China to examine variations in elements and isotopes of subseafloor sulfides vertically.</p><p>The vertical distribution of trace elements in subseafloor sulfides is strongly controlled by temperature gradients and redox states during the interaction between hot fluids and seawater beneath the paleo-seafloor. While the enrichment of elements like As, Sb, and Au (median: 1335, 43.7, and 0.30 ppm, respectively, n = 21) and negative δ<sup>34</sup>S values (mean: −3.07 ‰, n = 7) of euhedral pyrites in the jasper, along with the precipitation of high sulfidation minerals (e.g., enargite), suggest the input of magmatic volatiles into hydrothermal systems. During the shallow seawater-hydrothermal circulation, pyrites in the veined and stockwork zones exhibit distinctly elevated δ<sup>34</sup>S values (up to 15.74 ‰), accompanied by increased concentrations of wall-rock-derived elements (e.g., Cu, Ni, Si, and Ti) and low-temperature-responsive elements (e.g., Pb, Zn, and Cd). Sulfur isotopes of sulfides vary significantly from the surface to the deep ore zones, ranging from −3.36 to 19.84 ‰ (mean: 9.25 ‰, n = 37). The negative δ<sup>34</sup>S values of pyrites at the paleo-seafloor are due to the addition of H<sub>2</sub>S derived from the disproportionation of magmatic SO<sub>2</sub>. The increased δ<sup>34</sup>S values of stockwork and disseminated sulfides at depth are attributed to the progressive reduction of seawater sulfates by ferrous iron released from the alteration of fresh basalts. The trace elemental and isotopic characteristics of sulfides suggest the Shujuligou VMS deposit resembles the fossil analog of immature, subduction-related submarine hydrothermal systems.</p></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X24002004","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Limited access to modern subseafloor sulfides hampers our understanding of the link between magmatic volatile influx and the cycling of trace elements and sulfur, as well as the effect of the subsequent shallow seawater circulation on these processes. Hence, we studied a well-preserved fossil analog of submarine hydrothermal systems – the Shijuligou volcanogenic massive sulfide (VMS) deposit from the North Qilian Mountains in North China to examine variations in elements and isotopes of subseafloor sulfides vertically.

The vertical distribution of trace elements in subseafloor sulfides is strongly controlled by temperature gradients and redox states during the interaction between hot fluids and seawater beneath the paleo-seafloor. While the enrichment of elements like As, Sb, and Au (median: 1335, 43.7, and 0.30 ppm, respectively, n = 21) and negative δ34S values (mean: −3.07 ‰, n = 7) of euhedral pyrites in the jasper, along with the precipitation of high sulfidation minerals (e.g., enargite), suggest the input of magmatic volatiles into hydrothermal systems. During the shallow seawater-hydrothermal circulation, pyrites in the veined and stockwork zones exhibit distinctly elevated δ34S values (up to 15.74 ‰), accompanied by increased concentrations of wall-rock-derived elements (e.g., Cu, Ni, Si, and Ti) and low-temperature-responsive elements (e.g., Pb, Zn, and Cd). Sulfur isotopes of sulfides vary significantly from the surface to the deep ore zones, ranging from −3.36 to 19.84 ‰ (mean: 9.25 ‰, n = 37). The negative δ34S values of pyrites at the paleo-seafloor are due to the addition of H2S derived from the disproportionation of magmatic SO2. The increased δ34S values of stockwork and disseminated sulfides at depth are attributed to the progressive reduction of seawater sulfates by ferrous iron released from the alteration of fresh basalts. The trace elemental and isotopic characteristics of sulfides suggest the Shujuligou VMS deposit resembles the fossil analog of immature, subduction-related submarine hydrothermal systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深部岩浆脱气和浅层海水循环对海底热液系统微量元素和硫循环的影响:华北石柱沟模拟的启示
对现代海底硫化物的有限研究阻碍了我们对岩浆挥发物流入与微量元素和硫的循环之间的联系以及随后的浅海水循环对这些过程的影响的理解。因此,我们研究了保存完好的海底热液系统类似化石--华北祁连山石柱沟火山成因块状硫化物(VMS)矿床,以考察海底下硫化物元素和同位素的垂直变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gondwana Research
Gondwana Research 地学-地球科学综合
CiteScore
12.90
自引率
6.60%
发文量
298
审稿时长
65 days
期刊介绍: Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.
期刊最新文献
Stable carbon isotope chemostratigraphy of the base of the Callovian in Greenland Connectedness between artificial intelligence, clean energy, and conventional energy markets: Fresh findings from CQ and WLMC techniques Marine Fe cycling linked to dynamic redox variability, biological activity and post-depositional mineralization in the 1.1 Ga Mesoproterozoic Taoudeni Basin, Mauritania Synchronous felsic volcanism and carbonate sedimentation as a setting for VMS deposits localization at the Salair terrane, NE Central Asian Orogenic Belt Scheelite as a microtextural and geochemical tracer of multistage ore-forming processes in skarn mineralization: A case study from the giant Xintianling W deposit, South China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1