Interannual variation of the westward ridge point of the Western Pacific subtropical high in boreal winter

IF 4 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Global and Planetary Change Pub Date : 2024-07-23 DOI:10.1016/j.gloplacha.2024.104528
{"title":"Interannual variation of the westward ridge point of the Western Pacific subtropical high in boreal winter","authors":"","doi":"10.1016/j.gloplacha.2024.104528","DOIUrl":null,"url":null,"abstract":"<div><p>This study adopts a novel dynamic index of the westward ridge point (WRP) of the western Pacific subtropical high (WPSH) to investigate the interannual variation of the WPSH in boreal winter. The WRP index based on the theory of gradient wind approximation is particularly suitable for boreal winters. The WRP index comprises two dimensions that depict the zonal and meridional movement of the WPSH, respectively. There is a significant positive correlation between the zonal WRP index and the meridional WRP index. When the WPSH gets stronger, the WRP and the WPSH shift equatorward while advancing westward, and vice versa. The zonal and meridional shifts of the WPSH have distinct impact on the climate anomalies in the western North Pacific and East Asia. The northward shift of the WPSH characterizes a cyclonic-anticyclonic pair over western North Pacific, whereas the eastward shift of the WPSH characterizes a cyclonic anomaly over the subtropical western North Pacific. The anomalies of precipitation and surface air temperature vary accordingly. The meridional shift of the WPSH is closely associated with the El Niño-Southern Oscillation (ENSO) Sea Surface Temperature (SST) anomalies. The WRP index also demonstrates robust predictability in the hindcast data from ENSEMBLES, suggesting its far-reaching potential for climate prediction.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124001759","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study adopts a novel dynamic index of the westward ridge point (WRP) of the western Pacific subtropical high (WPSH) to investigate the interannual variation of the WPSH in boreal winter. The WRP index based on the theory of gradient wind approximation is particularly suitable for boreal winters. The WRP index comprises two dimensions that depict the zonal and meridional movement of the WPSH, respectively. There is a significant positive correlation between the zonal WRP index and the meridional WRP index. When the WPSH gets stronger, the WRP and the WPSH shift equatorward while advancing westward, and vice versa. The zonal and meridional shifts of the WPSH have distinct impact on the climate anomalies in the western North Pacific and East Asia. The northward shift of the WPSH characterizes a cyclonic-anticyclonic pair over western North Pacific, whereas the eastward shift of the WPSH characterizes a cyclonic anomaly over the subtropical western North Pacific. The anomalies of precipitation and surface air temperature vary accordingly. The meridional shift of the WPSH is closely associated with the El Niño-Southern Oscillation (ENSO) Sea Surface Temperature (SST) anomalies. The WRP index also demonstrates robust predictability in the hindcast data from ENSEMBLES, suggesting its far-reaching potential for climate prediction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北半球冬季西太平洋副热带高压西脊点的年际变化
本研究采用一种新的西太平洋副热带高压西脊点(WRP)动态指数来研究北方冬季副热带高压的年际变化。基于梯度风近似理论的WRP指数特别适用于北方冬季。WRP 指数包括两个维度,分别描述 WPSH 的地带性和经向移动。带状 WRP 指数与经向 WRP 指数之间存在明显的正相关。当 WPSH 变强时,WRP 和 WPSH 向赤道移动,同时向西移动,反之亦然。WPSH 的区向移动和经向移动对北太平洋西部和东亚的气候异常有明显的影响。WPSH 的北移是北太平洋西部气旋-反气旋对的特征,而 WPSH 的东移则是北太平洋西部副热带气旋异常的特征。降水和地表气温的异常也随之变化。WPSH 的经向移动与厄尔尼诺-南方涛动(ENSO)海面温度异常密切相关。在 ENSEMBLES 的后报数据中,WRP 指数也显示出强大的可预测性,表明其在气候预测方面具有深远的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global and Planetary Change
Global and Planetary Change 地学天文-地球科学综合
CiteScore
7.40
自引率
10.30%
发文量
226
审稿时长
63 days
期刊介绍: The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems. Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged. Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.
期刊最新文献
Increasing heat waves frequencies over India during post-El Niño spring and early summer seasons A refined model for the mechanisms of Precambrian phosphorite formation Editorial Board Diversity of the climatological seasonal march of East Asian summer monsoon rainfall among the CMIP6 models Middle Pleistocene weakening of the Indian summer monsoon driven by global cooling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1