{"title":"Oxidation of benzene with N2O on ZSM-5 zeolite: A comparison of gas-phase and supercritical conditions","authors":"V.I. Bogdan , V.L. Zholobenko , T.V. Bogdan , A.L. Kustov , A.E. Koklin , I.I. Mishanin , N.V. Mashchenko , S.E. Bogorodskiy","doi":"10.1016/j.supflu.2024.106355","DOIUrl":null,"url":null,"abstract":"<div><p>The catalytic oxidation of benzene with nitrous oxide (N<sub>2</sub>O) over ZSM-5 zeolite has been carried out in a continuous-flow reactor under supercritical conditions and compared with the results of the gas-phase reaction. Aromatic substrates and nitrous oxide under the conditions of supercritical experiments (300–435 °C, 6.0–18.0 MPa) are both reagents and the supercritical medium. It has been established that the productivity of the supercritical oxidation of benzene into phenol significantly exceeds the productivity of the gas-phase process owing to the limited reversible deactivation of the catalyst under supercritical conditions and the <em>in situ</em> removal of the coke precursors by the dense reaction medium. In addition, it has been demonstrated that a successful in situ regeneration of the deactivated oxidation catalyst can be carried out during the transition from gas-phase reaction conditions to supercritical conditions in one experiment.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106355"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624001906","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic oxidation of benzene with nitrous oxide (N2O) over ZSM-5 zeolite has been carried out in a continuous-flow reactor under supercritical conditions and compared with the results of the gas-phase reaction. Aromatic substrates and nitrous oxide under the conditions of supercritical experiments (300–435 °C, 6.0–18.0 MPa) are both reagents and the supercritical medium. It has been established that the productivity of the supercritical oxidation of benzene into phenol significantly exceeds the productivity of the gas-phase process owing to the limited reversible deactivation of the catalyst under supercritical conditions and the in situ removal of the coke precursors by the dense reaction medium. In addition, it has been demonstrated that a successful in situ regeneration of the deactivated oxidation catalyst can be carried out during the transition from gas-phase reaction conditions to supercritical conditions in one experiment.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.