Reimagining Archimedes: An innovative and accurate calculation of volumes and asserting another standard method for defining the surface area of quail and any avian eggs

IF 3.5 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food and Bioproducts Processing Pub Date : 2024-07-22 DOI:10.1016/j.fbp.2024.07.013
{"title":"Reimagining Archimedes: An innovative and accurate calculation of volumes and asserting another standard method for defining the surface area of quail and any avian eggs","authors":"","doi":"10.1016/j.fbp.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>Egg-related research promises unique opportunities for food science and technology. There is an urgent need to develop non-destructive methodologies for defining key egg parameters, e.g., egg volume (<em>V</em>) and surface area (<em>S</em>), based only on egg images. Herewith, <em>V</em> can be measured using the Archimedes’ principle (i.e., dipping in water), while <em>S</em> can be inferred using formulae that include <em>V</em> as one of its variables. Although the Archimedes’ principle is the best approach for determining <em>V</em>, dipping an egg into water cannot be practicable. In this study, we derived the appropriate mathematical approaches to calculate <em>V</em> and <em>S</em> based on measurements of quail eggs’ linear parameters. The proposed calculation formulae are suitable for eggs of any shape and species. This innovative procedure can be employed as the basis of the most accurate of all existing methods for computing <em>S</em> and is suitable for both analytical and industrial measurements of <em>V</em>.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096030852400138X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Egg-related research promises unique opportunities for food science and technology. There is an urgent need to develop non-destructive methodologies for defining key egg parameters, e.g., egg volume (V) and surface area (S), based only on egg images. Herewith, V can be measured using the Archimedes’ principle (i.e., dipping in water), while S can be inferred using formulae that include V as one of its variables. Although the Archimedes’ principle is the best approach for determining V, dipping an egg into water cannot be practicable. In this study, we derived the appropriate mathematical approaches to calculate V and S based on measurements of quail eggs’ linear parameters. The proposed calculation formulae are suitable for eggs of any shape and species. This innovative procedure can be employed as the basis of the most accurate of all existing methods for computing S and is suitable for both analytical and industrial measurements of V.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新认识阿基米德:创新性地精确计算体积,并提出另一种定义鹌鹑蛋和其他鸟蛋表面积的标准方法
与鸡蛋有关的研究为食品科学和技术带来了独特的机遇。目前迫切需要开发非破坏性方法,仅根据鸡蛋图像来确定鸡蛋的关键参数,如鸡蛋体积()和表面积()。因此,可以使用阿基米德原理(即浸入水中)来测量,也可以使用包含变量之一的公式来推断。虽然阿基米德原理是确定鸡蛋体积的最佳方法,但将鸡蛋浸入水中并不可行。在这项研究中,我们根据对鹌鹑蛋线性参数的测量,推导出计算和的适当数学方法。提出的计算公式适用于任何形状和种类的蛋。这一创新程序可作为所有现有计算方法中最精确方法的基础,适用于......的分析和工业测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Bioproducts Processing
Food and Bioproducts Processing 工程技术-工程:化工
CiteScore
9.70
自引率
4.30%
发文量
115
审稿时长
24 days
期刊介绍: Official Journal of the European Federation of Chemical Engineering: Part C FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering. Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing. The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those: • Primarily concerned with food formulation • That use experimental design techniques to obtain response surfaces but gain little insight from them • That are empirical and ignore established mechanistic models, e.g., empirical drying curves • That are primarily concerned about sensory evaluation and colour • Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material, • Containing only chemical analyses of biological materials.
期刊最新文献
Synthesis, characterization, and evaluation of antibacterial properties of silver/ carboxymethyl cellulose/ bacterial cellulose/ Clitoria ternatea extract aerogel composites Freeze, spray, and vacuum dried Camelina sativa protein powders and their physicochemical and functional properties Exploring solution composition and vacuum pulse effects in the osmotic processing of sole (Paralichthys sp.) fillets Nanoencapsulation of Spirulina sp. LEB 18 microalgae biomass using electrospray technique and application in chocolate milk Construction and characteristics of EGCG-porcine serum albumin pickering emulsion: Based on noncovalent interactions mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1