Temporal and Spatial Optimization for 5G Base Station Groups in Distribution Networks

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Modern Power Systems and Clean Energy Pub Date : 2023-11-29 DOI:10.35833/MPCE.2023.000024
Silu Zhang;Nian Liu;Jianpei Han
{"title":"Temporal and Spatial Optimization for 5G Base Station Groups in Distribution Networks","authors":"Silu Zhang;Nian Liu;Jianpei Han","doi":"10.35833/MPCE.2023.000024","DOIUrl":null,"url":null,"abstract":"With the large-scale connection of 5G base stations (BSs) to the distribution networks (DNs), 5G BSs are utilized as flexible loads to participate in the peak load regulation, where the BSs can be divided into base station groups (BSGs) to realize inter-district energy transfer. A Stackelberg game-based optimization framework is proposed, where the distribution network operator (DNO) works as a leader with dynamic pricing for multi-BSGs; while BSGs serve as followers with the ability of demand response to adjust their charging and discharging strategies in temporal dimension and load migration strategy in spatial dimension. Subsequently, the presence and uniqueness of the Stackelberg equilibrium (SE) are provided. Moreover, differential evolution is adopted to reach the SE and the optimization problem in multi-BSGs is decomposed to solve the time-space coupling. Finally, through simulation of a practical system, the results show that the DNO operation profit is increased via cutting down the peak load and the operation costs for multi-BSGs are reduced, which reaches a win-win effect.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10335160","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10335160/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the large-scale connection of 5G base stations (BSs) to the distribution networks (DNs), 5G BSs are utilized as flexible loads to participate in the peak load regulation, where the BSs can be divided into base station groups (BSGs) to realize inter-district energy transfer. A Stackelberg game-based optimization framework is proposed, where the distribution network operator (DNO) works as a leader with dynamic pricing for multi-BSGs; while BSGs serve as followers with the ability of demand response to adjust their charging and discharging strategies in temporal dimension and load migration strategy in spatial dimension. Subsequently, the presence and uniqueness of the Stackelberg equilibrium (SE) are provided. Moreover, differential evolution is adopted to reach the SE and the optimization problem in multi-BSGs is decomposed to solve the time-space coupling. Finally, through simulation of a practical system, the results show that the DNO operation profit is increased via cutting down the peak load and the operation costs for multi-BSGs are reduced, which reaches a win-win effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式网络中 5G 基站群的时空优化
随着 5G 基站(BSs)与配电网(DNs)的大规模连接,5G BSs 可作为灵活负荷参与高峰负荷调节,其中 BSs 可划分为基站群(BSGs)以实现跨区能量传输。本文提出了一个基于斯塔克尔伯格博弈的优化框架,其中配电网运营商(DNO)作为领导者,对多基站群进行动态定价;而基站群作为跟随者,具有需求响应能力,可在时间维度上调整充放电策略,在空间维度上调整负荷迁移策略。随后,提供了斯塔克尔伯格均衡(SE)的存在性和唯一性。此外,还采用了微分演化的方法来达到 SE,并对多BSG 中的优化问题进行了分解,以解决时空耦合问题。最后,通过对实际系统的仿真,结果表明通过削减高峰负荷增加了 DNO 的运营利润,同时降低了多BSG 的运营成本,达到了双赢的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
期刊最新文献
Contents Contents Regional Power System Black Start with Run-of-River Hydropower Plant and Battery Energy Storage Power Flow Calculation for VSC-Based AC/DC Hybrid Systems Based on Fast and Flexible Holomorphic Embedding Machine Learning Based Uncertainty-Alleviating Operation Model for Distribution Systems with Energy Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1