{"title":"Electronic perturbation of Cu nanowire surfaces with functionalized graphdiyne for enhanced CO2 reduction reaction","authors":"Haiyuan Zou, Dongfang Cheng, Chao Tang, Wen Luo, Huatian Xiong, Hongliang Dong, Fan Li, Tao Song, Siyan Shu, Hao Dai, Ziang Cui, Zhouguang Lu, Lele Duan","doi":"10.1093/nsr/nwae253","DOIUrl":null,"url":null,"abstract":"Electronic perturbation of Cu catalysts surface is crucial for optimizing electrochemical CO2 reduction activity, yet still poses great challenges. Herein, nanostructured Cu nanowires (NW) with fine-tuned surface electronic structure are achieved via surface encapsulation with electron-withdrawing (–F) and -donating (–Me) group-functionalized graphdiynes (R-GDY, R = –F and –Me), and the resulting catalysts, denoted as R-GDY/Cu NW, display distinct CO2 reduction performances. In-situ electrochemical spectroscopy revealed that the *CO (a key intermediate of the CO2 reduction reaction) binding affinity and consequent *CO coverage positively correlate to the Cu surface oxidation state, leading to the favorable C–C coupling on F-GDY/Cu NW over Me-GDY/Cu NW. Electrochemical measurements corroborate the favorable C2H4 production with an optimum C2+ selectivity of 73.15% ± 2.5% observed for F-GDY/Cu NW, while the predominant CH4 production is favored by Me-GDY/Cu NW. Furthermore, leveraging the *Cu–OH/*CO ratio as a descriptor, mechanistic investigation reveals that the protonation of distinct adsorbed *CO facilitated by *Cu–OH is crucial for the selective generation of C2H4 and CH4 on F-GDY/Cu NW and Me-GDY/Cu NW, respectively.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"142 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae253","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic perturbation of Cu catalysts surface is crucial for optimizing electrochemical CO2 reduction activity, yet still poses great challenges. Herein, nanostructured Cu nanowires (NW) with fine-tuned surface electronic structure are achieved via surface encapsulation with electron-withdrawing (–F) and -donating (–Me) group-functionalized graphdiynes (R-GDY, R = –F and –Me), and the resulting catalysts, denoted as R-GDY/Cu NW, display distinct CO2 reduction performances. In-situ electrochemical spectroscopy revealed that the *CO (a key intermediate of the CO2 reduction reaction) binding affinity and consequent *CO coverage positively correlate to the Cu surface oxidation state, leading to the favorable C–C coupling on F-GDY/Cu NW over Me-GDY/Cu NW. Electrochemical measurements corroborate the favorable C2H4 production with an optimum C2+ selectivity of 73.15% ± 2.5% observed for F-GDY/Cu NW, while the predominant CH4 production is favored by Me-GDY/Cu NW. Furthermore, leveraging the *Cu–OH/*CO ratio as a descriptor, mechanistic investigation reveals that the protonation of distinct adsorbed *CO facilitated by *Cu–OH is crucial for the selective generation of C2H4 and CH4 on F-GDY/Cu NW and Me-GDY/Cu NW, respectively.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.