A 266F2 Ultra Stable Differential NOR-Structured Physically Unclonable Function With < 6×10-9 Bit Error Rate Through Efficient Redundancy Strategy

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems II: Express Briefs Pub Date : 2024-07-25 DOI:10.1109/TCSII.2024.3433543
Haoyi Zhang;Jiahao Song;Haoyang Luo;Xiyuan Tang;Yuan Wang;Runsheng Wang;Ru Huang
{"title":"A 266F2 Ultra Stable Differential NOR-Structured Physically Unclonable Function With < 6×10-9 Bit Error Rate Through Efficient Redundancy Strategy","authors":"Haoyi Zhang;Jiahao Song;Haoyang Luo;Xiyuan Tang;Yuan Wang;Runsheng Wang;Ru Huang","doi":"10.1109/TCSII.2024.3433543","DOIUrl":null,"url":null,"abstract":"This brief presents a NOR-structured physically unclonable function (PUF) tailored for low-cost Internet of Things (IoT) applications. The proposed NOR-structured PUF utilizes a single minimum-sized differential NMOS pair, capitalizing on threshold-voltage mismatch as the entropy source. Fabricated in 65nm CMOS, the basic PUF cell is a \n<inline-formula> <tex-math>$58F^{2}$ </tex-math></inline-formula>\n differential NMOS pair, demonstrating a raw bit error rate (BER) of 0.31%. To further enhance the stability and achieve an ultra-low BER, we introduce an area-efficient redundancy strategy. By incorporating 4x redundancy cells (\n<inline-formula> <tex-math>$266F^{2}$ </tex-math></inline-formula>\n in total), the prototype chip achieves an ultra-low BER (zero error in 20M bits), over a wide temperature range (−20 to 125°C) and supply voltage variations (0.8 to 1.2V). The core energy consumption is only 63fJ/bit, offering a low-cost and highly stable solution for IoT applications.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"71 12","pages":"4979-4983"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10609250/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This brief presents a NOR-structured physically unclonable function (PUF) tailored for low-cost Internet of Things (IoT) applications. The proposed NOR-structured PUF utilizes a single minimum-sized differential NMOS pair, capitalizing on threshold-voltage mismatch as the entropy source. Fabricated in 65nm CMOS, the basic PUF cell is a $58F^{2}$ differential NMOS pair, demonstrating a raw bit error rate (BER) of 0.31%. To further enhance the stability and achieve an ultra-low BER, we introduce an area-efficient redundancy strategy. By incorporating 4x redundancy cells ( $266F^{2}$ in total), the prototype chip achieves an ultra-low BER (zero error in 20M bits), over a wide temperature range (−20 to 125°C) and supply voltage variations (0.8 to 1.2V). The core energy consumption is only 63fJ/bit, offering a low-cost and highly stable solution for IoT applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过高效冗余策略实现 < 6× 10-9 比特错误率的 266F2 超稳定差分 NOR 结构物理不可克隆函数
本文介绍了一种专为低成本物联网(IoT)应用定制的 NOR 结构物理不可克隆函数(PUF)。所提出的 NOR 结构 PUF 利用单个最小尺寸的差分 NMOS 对,将阈值电压失配作为熵源。基本 PUF 单元采用 65nm CMOS 制造,是一对 $58F^{2}$ 差分 NMOS,原始误码率 (BER) 为 0.31%。为了进一步提高稳定性并实现超低误码率,我们引入了一种节省面积的冗余策略。通过采用 4 倍冗余单元(总计 266F^{2}$ 美元),原型芯片在宽温度范围(-20 至 125°C)和电源电压变化(0.8 至 1.2V)条件下实现了超低误码率(2000 万比特零误码)。内核能耗仅为 63fJ/比特,为物联网应用提供了低成本、高稳定性的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information Table of Contents Guest Editorial Special Issue on the 2024 ISICAS: A CAS Journal Track Symposium IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1