{"title":"An optimized hybrid graphite/boron nitride polymer nanocomposite: enhancement in characteristic properties","authors":"Debamita Mohanty, Smita Mohanty, Debmalya Roy, Sakti Ranjan Acharya, Arun Kumar","doi":"10.1007/s13726-024-01361-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid nanocomposites have been synthesized utilizing epoxy (E) and varying weight percentages of carbon nanotube (CNT), exfoliated graphite (EG), boron nitride (BN), and graphene (GR) as fillers. The incorporation of these nanofillers into the epoxy matrix led to significant enhancement in mechanical and thermal properties of the matrix polymer. Two specific nanocomposite formulations were optimized, one comprising 0.2% (by weight) CNT and 0.3% (by weight) BN (E/CNT<sub>1</sub>/BN<sub>2</sub>), and the other comprising 0.2% (by weight) CNT and 0.5% (by weight) EG (E/CNT<sub>1</sub>/EG<sub>3</sub>). These formulations demonstrated optimized mechanical properties like impact strength, tensile strength, thermal conductivity, and flexural strength with values of 31.46 ± 4 kJ/m<sup>2</sup>, 50.35 ± 4 MPa, 0.201 W/(mK), and 97.57 ± 3 MPa in case of E/CNT<sub>1</sub>/EG<sub>3</sub>, and 37.19 ± 3 kJ/m<sup>2</sup>, 54.59 ± 5 MPa, 0.224 W/(mK), and 116.37 ± 6 MPa for E/CNT<sub>1</sub>/BN<sub>2</sub> nanocomposite. The incorporation of fillers also resulted in notable enhancements in thermal properties, as evidenced from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) results. The structural and morphological properties of the nanocomposite were analyzed using scanning electron microscopy (SEM). Furthermore, flame properties of the optimized composite were investigated through cone calorimetry tests while the corresponding char residue was analyzed by employing SEM.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 12","pages":"1779 - 1791"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01361-2","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid nanocomposites have been synthesized utilizing epoxy (E) and varying weight percentages of carbon nanotube (CNT), exfoliated graphite (EG), boron nitride (BN), and graphene (GR) as fillers. The incorporation of these nanofillers into the epoxy matrix led to significant enhancement in mechanical and thermal properties of the matrix polymer. Two specific nanocomposite formulations were optimized, one comprising 0.2% (by weight) CNT and 0.3% (by weight) BN (E/CNT1/BN2), and the other comprising 0.2% (by weight) CNT and 0.5% (by weight) EG (E/CNT1/EG3). These formulations demonstrated optimized mechanical properties like impact strength, tensile strength, thermal conductivity, and flexural strength with values of 31.46 ± 4 kJ/m2, 50.35 ± 4 MPa, 0.201 W/(mK), and 97.57 ± 3 MPa in case of E/CNT1/EG3, and 37.19 ± 3 kJ/m2, 54.59 ± 5 MPa, 0.224 W/(mK), and 116.37 ± 6 MPa for E/CNT1/BN2 nanocomposite. The incorporation of fillers also resulted in notable enhancements in thermal properties, as evidenced from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) results. The structural and morphological properties of the nanocomposite were analyzed using scanning electron microscopy (SEM). Furthermore, flame properties of the optimized composite were investigated through cone calorimetry tests while the corresponding char residue was analyzed by employing SEM.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.