{"title":"Density functional theory and ReaxFF MD study on steam-induced nitrogen migration mechanism during char gasification","authors":"","doi":"10.1016/j.joei.2024.101763","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of nitrogen-containing species during char gasification is crucial for emission of nitrogenous pollutants. In this work, the detailed nitrogen migration mechanism during char gasification is studied. Density functional theory (DFT) coupled with ReaxFF MD methods are used to conduct an in-depth analysis on the intrinsic reaction mechanism during Char(N) and steam interaction. DFT results show that orbital electrons of carbon atoms on char surface are driven towards nitrogen atoms by nitrogen functional groups. The electron density of adjacent carbon atoms is weakened, which has a positive charge. Orbital electron properties show that the band energy gaps of three Char(N) models are 3.063 eV, 1.092 eV and 3.328 eV, indicating the reactivity order for three Char(N) models is as follows: Char(N)-2>Char(N)-1>Char(N)-3. DFT calculation indicates that the interaction between Char(N) and steam reduces unsaturated carbon atoms and lower the char decomposition activity, which will inhibit the yield of HCN. In contrast, through hydrogen transfer reactions, nitrogen atoms are easily combined with hydrogen atoms, which is more conducive to the formation of ammonia. ReaxFF MD modeling proves that HCN is the main product for Char(N) decomposition under inert atmosphere. Under steam atmosphere, nitrogen atoms in char are more likely to be converted into amino products. The induction of steam provides a large number of active hydrogen radicals, which is able to attack the nitrogen atoms of char and form N–H bonds, thus promoting the formation of ammonia.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002411","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of nitrogen-containing species during char gasification is crucial for emission of nitrogenous pollutants. In this work, the detailed nitrogen migration mechanism during char gasification is studied. Density functional theory (DFT) coupled with ReaxFF MD methods are used to conduct an in-depth analysis on the intrinsic reaction mechanism during Char(N) and steam interaction. DFT results show that orbital electrons of carbon atoms on char surface are driven towards nitrogen atoms by nitrogen functional groups. The electron density of adjacent carbon atoms is weakened, which has a positive charge. Orbital electron properties show that the band energy gaps of three Char(N) models are 3.063 eV, 1.092 eV and 3.328 eV, indicating the reactivity order for three Char(N) models is as follows: Char(N)-2>Char(N)-1>Char(N)-3. DFT calculation indicates that the interaction between Char(N) and steam reduces unsaturated carbon atoms and lower the char decomposition activity, which will inhibit the yield of HCN. In contrast, through hydrogen transfer reactions, nitrogen atoms are easily combined with hydrogen atoms, which is more conducive to the formation of ammonia. ReaxFF MD modeling proves that HCN is the main product for Char(N) decomposition under inert atmosphere. Under steam atmosphere, nitrogen atoms in char are more likely to be converted into amino products. The induction of steam provides a large number of active hydrogen radicals, which is able to attack the nitrogen atoms of char and form N–H bonds, thus promoting the formation of ammonia.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.