Gas detection using cavity-enhanced Raman spectroscopy with a bidirectional multi-pass cell and polarization beam-splitting optical path

IF 2 3区 物理与天体物理 Q3 OPTICS Applied Physics B Pub Date : 2024-07-24 DOI:10.1007/s00340-024-08285-y
Yuhao Zheng, Xiaer Zou, Sailing He
{"title":"Gas detection using cavity-enhanced Raman spectroscopy with a bidirectional multi-pass cell and polarization beam-splitting optical path","authors":"Yuhao Zheng,&nbsp;Xiaer Zou,&nbsp;Sailing He","doi":"10.1007/s00340-024-08285-y","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate a substantial enhancement of gas Raman scattering using a bidirectional multi-pass cavity CERS system, which incorporates a polarization beam-splitting optical path. The system design allows the laser light to traverse the multi-pass cavity for four specific trips, satisfying the need for quick detection of various gas components. Our gas detection experiments using multi-pass cavities with different times of reflection indicate that the addition of polarization beam-splitting optical path gives 1.5 to 1.68 times enhancement of Raman signal compared with that of the system without polarization beam-splitting. For the detection of CH<sub>4</sub>, a limit of detection of 1.66 ppm was achieved with our system using a multi-pass cell with 41 times of reflection and an integration time of 30s. Our proposed design, which integrates a bidirectional multi-pass cavity with polarization beam-splitting optical path, gives an economical multicomponent gas detection system and a valuable tool for guiding the design and precise alignment of these cavities. This system shows significant promise for applications in e.g. human breath and environmental monitoring.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"130 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00340-024-08285-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08285-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate a substantial enhancement of gas Raman scattering using a bidirectional multi-pass cavity CERS system, which incorporates a polarization beam-splitting optical path. The system design allows the laser light to traverse the multi-pass cavity for four specific trips, satisfying the need for quick detection of various gas components. Our gas detection experiments using multi-pass cavities with different times of reflection indicate that the addition of polarization beam-splitting optical path gives 1.5 to 1.68 times enhancement of Raman signal compared with that of the system without polarization beam-splitting. For the detection of CH4, a limit of detection of 1.66 ppm was achieved with our system using a multi-pass cell with 41 times of reflection and an integration time of 30s. Our proposed design, which integrates a bidirectional multi-pass cavity with polarization beam-splitting optical path, gives an economical multicomponent gas detection system and a valuable tool for guiding the design and precise alignment of these cavities. This system shows significant promise for applications in e.g. human breath and environmental monitoring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带有双向多通室和偏振分束光路的空腔增强拉曼光谱进行气体检测
我们利用双向多通腔 CERS 系统演示了气体拉曼散射的大幅增强,该系统采用了偏振分束光路。该系统的设计允许激光在多通腔中进行四次特定的穿越,从而满足了快速检测各种气体成分的需要。我们使用不同反射时间的多通腔进行的气体检测实验表明,与没有偏振分束的系统相比,增加偏振分束光路可使拉曼信号增强 1.5 至 1.68 倍。在检测 CH4 时,我们的系统使用了一个反射次数为 41 次、积分时间为 30 秒的多通单元,检测限达到了 1.66 ppm。我们提出的设计方案将双向多通腔与偏振分光光路集成在一起,提供了一种经济的多组分气体检测系统,同时也是指导这些腔体的设计和精确对准的重要工具。该系统在人体呼吸和环境监测等方面的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics B
Applied Physics B 物理-光学
CiteScore
4.00
自引率
4.80%
发文量
202
审稿时长
3.0 months
期刊介绍: Features publication of experimental and theoretical investigations in applied physics Offers invited reviews in addition to regular papers Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field. In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.
期刊最新文献
Combination dual-tapered fiber with band-pass filter in generating multi-wavelength Er3+-doped fiber laser Study on properties of microcavity resonance of AlGaInP based hexagonal photonic crystal Semiconductor nanostructured metamaterial for tunable enhanced absorption Multifunctional manipulations of full-space terahertz beams based on liquid-crystal-integrated multi-bit programmable metasurface Raman-induced wavelength shift in chalcogenide microstructure fiber: temperature sensing and machine learning analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1