Isotherm and kinetic modeling of Cr(VI) removal with quaternary ammonium functionalized silica

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-07-25 DOI:10.1007/s10971-024-06492-9
Fatma Fakhfakh, Sahar Raissi, Fatma Ben Jeddou, Raida Zribi Zghal, Abdelhamid Ghorbel
{"title":"Isotherm and kinetic modeling of Cr(VI) removal with quaternary ammonium functionalized silica","authors":"Fatma Fakhfakh,&nbsp;Sahar Raissi,&nbsp;Fatma Ben Jeddou,&nbsp;Raida Zribi Zghal,&nbsp;Abdelhamid Ghorbel","doi":"10.1007/s10971-024-06492-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we focused on the efficiency of Cr(VI) adsorption on quaternary ammonium functionalized silica. Additionally, kinetic and isothermal models have been successfully performed. We began by synthesizing the siliceous material through sol-gel process. The incorporation of ammonium groups into the siliceous structure was confirmed via FTIR spectroscopy. The textural characterization reveals that the synthesized adsorbent exhibits a high surface area with two types of porosity: micropores and mesopores. SEM analysis revealed heterogeneous particle morphology, with sizes ranging from 2 to 53.4 μm. Additionally, the point of zero charge was determined to be 2.4. We investigated the influence of various parameters on adsorption, including pH, adsorbent dosage, initial concentration, and temperature. The optimal pH for adsorption was found to be 2.0. The functionalized silica successfully removed 99% of Cr(VI) from solutions with concentrations below 50 mg/L. Furthermore, a notable adsorption capacity of 57 mg/g was noticed at 298 K. The material demonstrated effective regeneration through four cycles of reuse. For isotherm modeling, we used a non-linear approach with the PUPAIM library in R software. Kinetic modeling was performed using the PUPAK library. Statistical parameters were obtained for models with two, three, and four parameters, indicating that both Khan and Redlich–Peterson models fit well the data. Kinetic analysis showed that a pseudo-second-order model effectively described the initial chromium ion adsorption kinetics, followed by a diffusion phase beginning at 225 min. Moreover, the hybrid material exhibited antibacterial activity against various tested bacteria, even after being loaded with chromium ions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"921 - 940"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06492-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we focused on the efficiency of Cr(VI) adsorption on quaternary ammonium functionalized silica. Additionally, kinetic and isothermal models have been successfully performed. We began by synthesizing the siliceous material through sol-gel process. The incorporation of ammonium groups into the siliceous structure was confirmed via FTIR spectroscopy. The textural characterization reveals that the synthesized adsorbent exhibits a high surface area with two types of porosity: micropores and mesopores. SEM analysis revealed heterogeneous particle morphology, with sizes ranging from 2 to 53.4 μm. Additionally, the point of zero charge was determined to be 2.4. We investigated the influence of various parameters on adsorption, including pH, adsorbent dosage, initial concentration, and temperature. The optimal pH for adsorption was found to be 2.0. The functionalized silica successfully removed 99% of Cr(VI) from solutions with concentrations below 50 mg/L. Furthermore, a notable adsorption capacity of 57 mg/g was noticed at 298 K. The material demonstrated effective regeneration through four cycles of reuse. For isotherm modeling, we used a non-linear approach with the PUPAIM library in R software. Kinetic modeling was performed using the PUPAK library. Statistical parameters were obtained for models with two, three, and four parameters, indicating that both Khan and Redlich–Peterson models fit well the data. Kinetic analysis showed that a pseudo-second-order model effectively described the initial chromium ion adsorption kinetics, followed by a diffusion phase beginning at 225 min. Moreover, the hybrid material exhibited antibacterial activity against various tested bacteria, even after being loaded with chromium ions.

Graphical Abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
季铵功能化二氧化硅去除六价铬的等温线和动力学模型
在本研究中,我们重点研究了季铵功能化二氧化硅对 Cr(VI) 的吸附效率。此外,我们还成功建立了动力学和等温模型。我们首先通过溶胶-凝胶工艺合成了二氧化硅材料。傅立叶变换红外光谱证实了铵基团与硅质结构的结合。质构表征显示,合成的吸附剂具有高比表面积和两种孔隙率:微孔和中孔。扫描电镜分析表明,颗粒形态不均匀,大小从 2 微米到 53.4 微米不等。此外,零电荷点被确定为 2.4。我们研究了各种参数对吸附的影响,包括 pH 值、吸附剂用量、初始浓度和温度。结果发现,吸附的最佳 pH 值为 2.0。功能化二氧化硅成功地从浓度低于 50 mg/L 的溶液中去除了 99% 的六价铬。此外,该材料在 298 K 时的吸附容量为 57 mg/g。在等温线建模方面,我们采用了 R 软件中 PUPAIM 库的非线性方法。使用 PUPAK 库进行了动力学建模。得出了具有两个、三个和四个参数的模型的统计参数,表明 Khan 模型和 Redlich-Peterson 模型都能很好地拟合数据。动力学分析表明,伪二阶模型有效地描述了最初的铬离子吸附动力学,随后从 225 分钟开始进入扩散阶段。此外,即使在负载铬离子后,杂化材料仍对各种受测细菌具有抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Enhancing glass surface hydrophobicity: the role of Perfluorooctyltriethoxysilane in advanced surface modification Structural, electrical, and thermal properties of Ba-substituted B(Pb)SCCO superconductors prepared by sol-gel method Role of chelating agents on the sol-gel synthesis of bismuth ferrite nanoparticles Enhanced uniformity of zirconia coating for high power lasers via solvent replacement and PEG-doping Novel molybdenum sulfide-decorated graphitic carbon nitride nanohybrid for enhanced electrochemical oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1